The interaction of soliton solutions for a variable coefficient nonlinear Schro•dinger equation

被引:4
作者
Yin, XiaoJun [1 ]
Liu, QuanSheng [2 ]
Narenmandula [1 ]
Bai, ShuTing [1 ]
机构
[1] Inner Mongolia Agr Univ, Coll Sci, Hohhot 010018, Peoples R China
[2] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
来源
OPTIK | 2021年 / 247卷
基金
中国国家自然科学基金;
关键词
Solitons; Optical fiber; Soliton interaction; Hirota bilinear method;
D O I
10.1016/j.ijleo.2021.167890
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, based on the variable coefficient Schro center dot dinger equation, which describes the optical fiber system or the Rossby waves, we first utilize the Hirota bilinear method to obtain the one-soliton and two-soliton solutions. Based on these soliton solutions, the propagation direction the soliton and the influence of each variable coefficient on optical soliton amplitude are dis-cussed. And we also give the parabolic, cubic and periodic solitons by changing the value variable coefficient. The interaction of the 2-soliton solutions is discussed. These results are great helpful for studying the optical communications in optical fiber.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Multi-soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrodinger equation [J].
Lan, Zhong-Zhou .
APPLIED MATHEMATICS LETTERS, 2018, 86 :243-248
[22]   One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrodinger equation [J].
Yang, Chunyu ;
Liu, Wenjun ;
Zhou, Qin ;
Mihalache, Dumitru ;
Malomed, Boris A. .
NONLINEAR DYNAMICS, 2019, 95 (01) :369-380
[23]   Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation [J].
Hui Xu ;
Zhengyi Ma ;
Jinxi Fei ;
Quanyong Zhu .
Nonlinear Dynamics, 2019, 98 :551-560
[24]   Multi-soliton solutions of the generalized variable-coefficient Bogoyavlenskii equation [J].
Zuo, Da-Wei ;
Jia, Hui-Xian .
WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (03) :413-424
[25]   Non-autonomous exact solutions and dynamic behaviors for the variable coefficient nonlinear Schrödinger equation with external potential [J].
Qin, Qing ;
Li, Li ;
Yu, Fajun .
PHYSICA SCRIPTA, 2025, 100 (01)
[26]   Multi-soliton solutions of a variable coefficient Schrodinger equation derived from vorticity equation [J].
Xu, Liyang ;
Yin, Xiaojun ;
Cao, Na ;
Bai, Shuting .
NONLINEAR DYNAMICS, 2024, 112 (03) :2197-2208
[27]   Investigation of optical soliton solutions of higher-order nonlinear Schrödinger equation having Kudryashov nonlinear refractive index [J].
Ozisik M. ;
Secer A. ;
Bayram M. ;
Cinar M. ;
Ozdemir N. ;
Esen H. ;
Onder I. .
Optik, 2023, 274
[28]   N-soliton solutions of coupled Schrödinger-Boussinesq equation with variable coefficients [J].
Zhang, LingLing ;
Han, HongTao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 138
[29]   Vector solutions of the coupled discrete conformable fractional nonlinear Schro•dinger equations [J].
Mou, Da-Sheng ;
Dai, Chao-Qing .
OPTIK, 2022, 258
[30]   Black and gray soliton interactions and cascade compression in the variable coefficient nonlinear Schrodinger equation [J].
Musammil, N. M. ;
Subha, P. A. ;
Nithyanandan, K. .
OPTIK, 2018, 159 :176-188