Initial boundary value problem for a class of wave equations of Hartree type

被引:2
作者
Zhang, Hongwei [1 ]
Su, Xiao [1 ]
机构
[1] Henan Univ Technol, Dept Math, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
blowup; global existence; Hartree-type nonlinearity; wave-Hartree equation; GLOBAL WELL-POSEDNESS; KLEIN-GORDON EQUATION; BLOW-UP PHENOMENON; SCATTERING-THEORY; PLATE EQUATION; EXISTENCE; INSTABILITY; THRESHOLD; NONEXISTENCE;
D O I
10.1111/sapm.12521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a class of wave equations of Hartree type on a bounded smooth convex domain with Dirichlet boundary condition. By applying the standard semigroup theory, we get the local existence result. Using potential well theory, we derive the condition of global existence of weak solutions. With the help of potential well theory and convexity method, we give blowup results for solutions when the initial energy is nonnegative or negative.
引用
收藏
页码:798 / 814
页数:17
相关论文
共 50 条
  • [31] Potential well method for initial boundary value problem of the generalized double dispersion equations
    Liu, Yacheng
    Xu, Runzhang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (01) : 63 - 81
  • [32] On the initial-boundary value problem for a Kuramoto-Sinelshchikov type equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    MATHEMATICS IN ENGINEERING, 2021, 3 (04):
  • [33] On the initial and terminal value problem for a class of semilinear strongly material damped plate equations
    Tuan, Nguyen Huy
    Au, Vo Van
    Xu, Runzhang
    Wang, Renhai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (02)
  • [34] Numerical initial boundary value problem for the generalized conformal field equations
    Beyer, Florian
    Frauendiener, Jorg
    Stevens, Chris
    Whale, Ben
    PHYSICAL REVIEW D, 2017, 96 (08)
  • [35] STABILITY OF INITIAL-BOUNDARY VALUE PROBLEM FOR QUASILINEAR VISCOELASTIC EQUATIONS
    Jin, Kun-Peng
    Liang, Jin
    Xiao, Ti-Jun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [36] Initial-boundary value problem for isothermal viscous gas equations
    Weigant, W.
    Plotnikov, P. I.
    DOKLADY MATHEMATICS, 2014, 89 (02) : 135 - 138
  • [37] Initial-Boundary-Value Problem for Inhomogeneous Degenerate Equations of Mixed Parabolic-Hyperbolic Type
    Sabitov K.B.
    Sidorov S.N.
    Journal of Mathematical Sciences, 2019, 236 (6) : 603 - 640
  • [38] Initial value problem for mixed-type differential equations
    J. S. Cassell
    Zhanyuan Hou
    Monatshefte für Mathematik, 1997, 124 : 133 - 145
  • [39] Initial value problem for mixed-type differential equations
    Cassell, JS
    Hou, ZY
    MONATSHEFTE FUR MATHEMATIK, 1997, 124 (02): : 133 - 145
  • [40] INITIAL BOUNDARY VALUE PROBLEM FOR TWO-DIMENSIONAL VISCOUS BOUSSINESQ EQUATIONS FOR MHD CONVECTION
    Bian, Dongfen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (06): : 1591 - 1611