Achieving arbitrarily large decay in the damped wave equation

被引:23
作者
Castro, C [1 ]
Cox, SJ
机构
[1] Univ Politecn Madrid, ETSI Caminos Canales & Puertos, Dept Matemat & Informat Aplicadas Ingn Civil, E-28006 Madrid, Spain
[2] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
关键词
damped wave equation; decay rate;
D O I
10.1137/S0363012900370971
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We exhibit a sequence of viscous dampings for the fixed string that yields arbitrarily fast attenuation of any and all initial disturbances. The limit case produces extinction of all solutions in finite time.
引用
收藏
页码:1748 / 1755
页数:8
相关论文
共 4 条
[1]   Energy decay rate of wave equations with indefinite damping [J].
Benaddi, A ;
Rao, BP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 161 (02) :337-357
[2]   THE RATE AT WHICH ENERGY DECAYS IN A DAMPED STRING [J].
COX, S ;
ZUAZUA, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (1-2) :213-243
[3]   Perturbing the critically damped wave equation [J].
Cox, SJ ;
Overton, ML .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (05) :1353-1362
[4]   Optimizing the rate of decay of solutions of the wave equation using genetic algorithms: A counterexample to the constant damping conjecture [J].
Freitas, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (02) :376-387