Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation

被引:38
作者
Zhang, Fengqin [1 ]
Li, Jianquan [2 ]
Zheng, Chongwu [1 ]
Wang, Lin [1 ,3 ]
机构
[1] Yuncheng Univ, Dept Appl Math, Yuncheng 044000, Shanxi, Peoples R China
[2] Air Force Engn Univ, Coll Sci, Xian 710051, Peoples R China
[3] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 42卷
基金
中国国家自然科学基金;
关键词
HBV/HCV infection; Intracellular delay; Stability and bifurcation; Chaos; B-VIRUS INFECTION; LOGISTIC HEPATOCYTE GROWTH; STABILITY ANALYSIS; VIRAL DYNAMICS; DIFFERENTIAL-EQUATIONS; DISTRIBUTED DELAYS; GLOBAL PROPERTIES; HIV-1; INFECTION; HBV INFECTION;
D O I
10.1016/j.cnsns.2016.06.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new mathematical model of hepatitis B/C virus (HBV/HCV) infection which incorporates the proliferation of healthy hepatocyte cells and the latent period of infected hepatocyte cells is proposed and studied. The dynamics is analyzed via Pontryagin's method and a newly proposed alternative geometric stability switch criterion. Sharp conditions ensuring stability of the infection persistent equilibrium are derived by applying Pontryagin's method. Using the intracellular delay as the bifurcation parameter and applying an alternative geometric stability switch criterion, we show that the HBV/HCV infection model undergoes stability switches. Furthermore, numerical simulations illustrate that the intracellular delay can induce complex dynamics such as persistence bubbles and chaos. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:464 / 476
页数:13
相关论文
共 35 条
[1]   Geometric stability switch criteria in delay differential systems with delay dependent parameters [J].
Beretta, E ;
Kuang, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (05) :1144-1165
[2]   Modeling the mechanisms of acute hepatitis B virus infection [J].
Ciupe, Stanca M. ;
Ribeiro, Ruy M. ;
Nelson, Patrick W. ;
Perelson, Alan S. .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 247 (01) :23-35
[3]   The role of cells refractory to productive infection in acute hepatitis B viral dynamics [J].
Ciupe, Stanca M. ;
Ribeiro, Ruy M. ;
Nelson, Patrick W. ;
Dusheiko, Geoffrey ;
Perelson, Alan S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (12) :5050-5055
[4]   A delay-differential equation model of HIV infection of CD4+ T-cells [J].
Culshaw, RV ;
Ruan, SG .
MATHEMATICAL BIOSCIENCES, 2000, 165 (01) :27-39
[5]  
Edelstein-Keshet L., 2005, MATH MODELS BIOL
[6]   THE DYNAMICS OF A DELAY MODEL OF HEPATITIS B VIRUS INFECTION WITH LOGISTIC HEPATOCYTE GROWTH [J].
Eikenberry, Steffen ;
Hews, Sarah ;
Nagy, John D. ;
Kuang, Yang .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2009, 6 (02) :283-299
[7]   Global properties of a class of HIV models [J].
Elaiw, A. M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) :2253-2263
[9]  
Hale JK, 1993, APPL MATH SCI, V3
[10]   Stability analysis of a virus dynamics model with general incidence rate and two delays [J].
Hattaf, Khalid ;
Yousfi, Noura ;
Tridane, Abdessamad .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 :514-521