Production performance of oil shale in-situ conversion with multilateral wells

被引:51
|
作者
Song, Xianzhi [1 ]
Zhang, Chengkai [1 ]
Shi, Yu [1 ]
Li, Gensheng [1 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
Oil shale; In-situ conversion; Multilateral wells; Fluid injection; Production performance; Numerical simulation; HEAT EXTRACTION PERFORMANCE; ENHANCED GEOTHERMAL SYSTEM; NUMERICAL-SIMULATION; PYROLYSIS; KEROGEN; MECHANISM; KINETICS; MODEL; RECOVERY; MIXTURE;
D O I
10.1016/j.energy.2019.116145
中图分类号
O414.1 [热力学];
学科分类号
摘要
A novel method using multilateral wells to perform oil shale in-situ conversion process is proposed in this paper. This method constructs radial branches in upper and lower oil shale formation as injection and production wells. Hot fluids are injected from the injection wells, and pyrolyzed oil and gas are extracted by production wells. In this study, a 3D transient model coupling fluid flow, heat transfer and chemical process is established and implemented on COMSOL Multiphysics platform to investigate the oil shale in-situ conversion process. The temperature field, production characteristics and energy performance are characterized. Sensitivity of oil shale properties and operational parameters are analyzed. Influences of multilateral-well arrangements are studied. The simulation results indicate that the products are strongly dependent to oil shale temperature. The specific heat capacity, injection fluid temperature and injection mass flow rate can significantly influence production performance, while thermal conductivity has negligible effect. Multilateral wells with 5 branches, 60 degrees branch angle and 40 m branch length show the best production performance among the computational cases. This study provides comprehensive insights and suggestions for the application of multilateral wells in oil shale in-situ conversion process. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Numerical and experimental investigation of production performance of in-situ conversion of shale oil by air injection
    Gao, Yang
    Wan, Tao
    Dong, Yan
    Li, Yingyan
    ENERGY REPORTS, 2022, 8 : 15740 - 15753
  • [2] Numerical and experimental investigation of production performance of in-situ conversion of shale oil by air injection
    Gao, Yang
    Wan, Tao
    Dong, Yan
    Li, Yingyan
    ENERGY REPORTS, 2022, 8 : 1099 - 1112
  • [3] EFFECT OF FLUID PROPERTIES ON OIL SHALE IN-SITU CONVERSION PERFORMANCE WITH FRACTURING
    Wang, Bin
    Wang, Rui
    Wang, Yiwei
    Su, Jianzheng
    Zhang, Xu
    Wang, Haizhu
    Chen, Kang
    THERMAL SCIENCE, 2024, 28 (4B): : 3493 - 3498
  • [4] Review of oil shale in-situ conversion technology
    Kang, Zhiqin
    Zhao, Yangsheng
    Yang, Dong
    APPLIED ENERGY, 2020, 269
  • [5] Numerical evaluations on the fluid production in the in-situ conversion of continental shale oil reservoirs
    ZhaoBin Zhang
    Maryelin Josefina Briceo Montilla
    ShouDing Li
    Xiao Li
    JianPeng Xing
    YanZhi Hu
    PetroleumScience, 2024, 21 (04) : 2485 - 2501
  • [6] Numerical evaluations on the fluid production in the in-situ conversion of continental shale oil reservoirs
    Zhang, Zhao-Bin
    Montilla, Maryelin Josefina Briceno
    Li, Shou-Ding
    Li, Xiao
    Xing, Jian-Peng
    Hu, Yan-Zhi
    PETROLEUM SCIENCE, 2024, 21 (04) : 2485 - 2501
  • [7] Modeling of the In-Situ Production of Oil from Oil Shale
    Bauman, Jacob H.
    Huang, Chung Kan
    Gani, M. Royhan
    Deo, Milind D.
    OIL SHALE: A SOLUTION TO THE LIQUID FUEL DILEMMA, 2009, 1032 : 135 - 146
  • [8] Performance study of modified aluminate cement under in-situ conversion conditions of shale oil
    Jian, Zhang
    Xiangchen, Wan
    Xiaorong, Chen
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 408
  • [9] Injection energy utilization efficiency and production performance of oil shale in-situ exploitation
    Shi, Yu
    Zhang, Yulong
    Song, Xianzhi
    Cui, Qiliang
    Lei, Zhihong
    Song, Guofeng
    ENERGY, 2023, 263
  • [10] A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process
    Huang, HanWei
    Yu, Hao
    Xu, WenLong
    Lyu, ChengSi
    Micheal, Marembo
    Xu, HengYu
    Liu, He
    Wu, HengAn
    ENERGY, 2023, 268