Adaptive Autonomous Navigation of Multiple Optoelectronic Microrobots in Dynamic Environments

被引:3
作者
Mennillo, Laurent [1 ]
Bendkowski, Christopher
Elsayed, Mohamed [2 ]
Edwards, Harrison [2 ]
Zhang, Shuailong [3 ,4 ]
Pawar, Vijay
Wheeler, Aaron R. [2 ]
Stoyanov, Danail [5 ]
Shaw, Michael [1 ,6 ]
机构
[1] UCL, London WC1E 6BT, England
[2] Univ Toronto, Toronto, ON M5S 3H6, Canada
[3] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Beijing Adv Innovat Ctr Intelligent Robots & Syst, Beijing 100081, Peoples R China
[5] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci WEISS, London W1W 7TS, England
[6] Natl Phys Lab, Teddington TW11 0LW, Middx, England
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2022年 / 7卷 / 04期
基金
英国经济与社会研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Micro/Nano robots; multi-robot systems; autono- mous agents; visual servoing; motion and path planning; CALIBRATION;
D O I
10.1109/LRA.2022.3194308
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The optoelectronic microrobot is an advanced light-controlled micromanipulation technology which has particular promise for collecting and transporting sensitive microscopic objects such as biological cells. However, wider application of the technology is currently limited by a reliance on manual control and a lack of methods for simultaneous manipulation of multiple microrobotic actuators. In this letter, we present a computational framework for autonomous navigation of multiple optoelectronic microrobots in dynamic environments. Combining closed-loop visual-servoing, SLAM, real-time visual detection of microrobots and obstacles, dynamic path-finding and adaptive motion behaviors, this approach allows microrobots to avoid static and moving obstacles, and perform a range of tasks in real-world dynamic environments. The capabilities of the system are demonstrated through micromanipulation experiments in simulation and in real conditions using a custom built optoelectronic tweezer system.
引用
收藏
页码:11102 / 11109
页数:8
相关论文
共 21 条
  • [1] Mobile Microrobots for In Vitro Biomedical Applications: A Survey
    Ahmad, Belal
    Gauthier, Michael
    Laurent, Guillaume J.
    Bolopion, Aude
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (01) : 646 - 663
  • [2] Automatic Camera-Based Microscope Calibration for a Telemicromanipulation System Using a Virtual Pattern
    Ammi, Mehdi
    Fremont, Vincent
    Ferreira, Antoine
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2009, 25 (01) : 184 - 191
  • [3] [Anonymous], 1999, P GAM DEV C
  • [4] Autonomous object harvesting using synchronized optoelectronic microrobots
    Bendkowski, Christopher
    Mennillo, Laurent
    Xu, Tao
    Elsayed, Mohamed
    Stojic, Filip
    Edwards, Harrison
    Zhang, Shuailong
    Morshead, Cindi
    Pawar, Vijay
    Wheeler, Aaron R.
    Stoyanov, Danail
    Shaw, Michael
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 7498 - 7504
  • [5] Bradski G, 2000, DR DOBBS J, V25, P120
  • [6] Guidance Laws for Planar Motion Control
    Breivik, Morten
    Fossen, Thor I.
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 570 - 577
  • [7] Chiou PY, 2005, NATURE, V436, P370, DOI [10.1038/nature03831, 10.1038/nature0383l]
  • [8] Sampling-based algorithms for optimal motion planning
    Karaman, Sertac
    Frazzoli, Emilio
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (07) : 846 - 894
  • [9] Fast and robust template matching with majority neighbour similarity and annulus projection transformation
    Lai, Jinxiang
    Lei, Liang
    Deng, Kaiyuan
    Yan, Runming
    Ruan, Yang
    Zhou Jinyun
    [J]. PATTERN RECOGNITION, 2020, 98
  • [10] Recent advances in optical tweezers
    Moffitt, Jeffrey R.
    Chemla, Yann R.
    Smith, Steven B.
    Bustamante, Carlos
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 2008, 77 : 205 - 228