Existence of solutions to boundary value problems for dynamic systems on time scales

被引:19
作者
Amster, P
Rogers, C
Tisdell, CC [1 ]
机构
[1] Univ Buenos Aires, Dept Matemat, Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[3] Univ New S Wales, Australian Res Council, Ctr Excellence Math & Stat Complex Syst, Sydney, NSW 2052, Australia
[4] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
time scales; boundary value problem; existence of solutions; topological methods;
D O I
10.1016/j.jmaa.2004.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here, we investigate systems of boundary value problems for dynamic equations on time scales. Using a generalized relationship between the boundary conditions and a certain subset of the solution space, the existence of solutions is established through topological arguments. The main tools used are Leray-Schauder and Brouwer degree theory. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:565 / 577
页数:13
相关论文
共 14 条
[1]  
Agarwal RP, 2001, NONLINEAR ANAL-THEOR, V44, P527
[2]  
Akin E., 2000, PANAMER MATH J, V10, P17
[3]   A fixed point operator for a nonlinear boundary value problem [J].
Amster, P ;
Mariani, MC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (01) :160-168
[4]  
[Anonymous], 1978, DEGREE THEORY
[5]  
[Anonymous], 2004, Adv. Difference Equ
[6]   Existence of positive solutions for singular ordinary differential equations with nonlinear boundary conditions [J].
Bobisud, LE ;
ORegan, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (07) :2081-2087
[7]  
Bohner M, 2003, ADVANCES IN DYNAMIC EQUATIONS ON TIME SCALES, P1
[8]  
BOHNER M., 2001, Dynamic equation on time scales. An introduction with applications
[9]  
Erbe L, 1999, DYN CONTIN DISCRET I, V6, P121
[10]   Topological transversality and boundary value problems on time scales [J].
Henderson, J ;
Tisdell, CC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (01) :110-125