Dark Channel Based Multiframe Super-Resolution Reconstruction

被引:1
作者
Shi, Shen [1 ,2 ,3 ,4 ]
Yin, Zengshan [2 ,3 ]
Mei, Zhiming [2 ,3 ]
Wang, Long [2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[2] Chinese Acad Sci, Innovat Acad Microsatellites, Shanghai 201210, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
基金
上海市科技启明星计划;
关键词
TV; Mathematical models; Image reconstruction; Image edge detection; Superresolution; Stairs; Frequency-domain analysis; Image process; multiframe super-resolution; dark channel prior; total variation prior; image prior combination; Bayesian framework; HIGH-RESOLUTION IMAGE; REGISTRATION; RESTORATION; ALGORITHM; SEQUENCE;
D O I
10.1109/ACCESS.2021.3120058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiframe super-resolution (MFSR) can obtain a high-resolution image from a set of low-resolution images. The performance of super-resolution is affected by the image prior information. The current super-resolution algorithms typically use total variation prior and its improved version, restoring the image edges well. However, it will produce artifacts and stair effects in the smooth region of the image. Therefore, we propose a dark channel-based MFSR algorithm to achieve edge-preserving and noise-suppressing. Firstly, the total variation prior is used to ensure the edge-preserving ability of the algorithm. Secondly, the dark channel prior is added to suppress artifacts and stair effects. Finally, the weights of the prior terms are iteratively adapted to obtain the final high-resolution image. Experiments show that the proposed algorithm can achieve a better result in objective and subjective visual evaluations.
引用
收藏
页码:141693 / 141702
页数:10
相关论文
共 54 条
[1]   Single-image super-resolution using online kernel adaptive filters [J].
Anver, Jesna ;
Parambil, Abdulla .
IET IMAGE PROCESSING, 2019, 13 (11) :1846-1852
[2]   Maximum a Posteriori Video Super-Resolution Using a New Multichannel Image Prior [J].
Belekos, Stefanos P. ;
Galatsanos, Nikolaos P. ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (06) :1451-1464
[3]  
Bioucas-Dias J., 2006, 2006 IEEE INT C AC S, V2, pII
[4]  
Bose N. K., 1993, ICASSP-93. 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing (Cat. No.92CH3252-4), P269, DOI 10.1109/ICASSP.1993.319799
[5]   Dark channel inspired deblurring method for remote sensing image [J].
Cao, Shixiang ;
Tan, Wei ;
Xing, Kun ;
He, Hongyan ;
Jiang, Jie .
JOURNAL OF APPLIED REMOTE SENSING, 2018, 12
[6]  
Chantas G., 2010, 2010 2nd International Workshop on Cognitive Information Processing (CIP 2010), P227, DOI 10.1109/CIP.2010.5604259
[7]   Variational Bayesian image restoration based on a product of t-distributions image prior [J].
Chantas, Glannis ;
Galatsanos, Nikolaos ;
Likas, Aristidis ;
Saunders, Michael .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (10) :1795-1805
[8]   Image super-resolution reconstruction based on feature map attention mechanism [J].
Chen, Yuantao ;
Liu, Linwu ;
Phonevilay, Volachith ;
Gu, Ke ;
Xia, Runlong ;
Xie, Jingbo ;
Zhang, Qian ;
Yang, Kai .
APPLIED INTELLIGENCE, 2021, 51 (07) :4367-4380
[9]   The face image super-resolution algorithm based on combined representation learning [J].
Chen, Yuantao ;
Phonevilay, Volachith ;
Tao, Jiajun ;
Chen, Xi ;
Xia, Runlong ;
Zhang, Qian ;
Yang, Kai ;
Xiong, Jie ;
Xie, Jingbo .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) :30839-30861
[10]   Research on image inpainting algorithm of improved total variation minimization method [J].
Chen, Yuantao ;
Zhang, Haopeng ;
Liu, Linwu ;
Tao, Jiajun ;
Zhang, Qian ;
Yang, Kai ;
Xia, Runlong ;
Xie, Jingbo .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (5) :5555-5564