Positive periodic solutions in delayed Gause-type predator-prey systems

被引:18
作者
Ding, Xiaoquan [1 ,2 ]
Jiang, Jifa [2 ]
机构
[1] Shanxi Agr Univ, Dept Math & Informat Sci, Shandong 271018, Peoples R China
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
predator-prey system; periodic solution; time delay; coincidence degree;
D O I
10.1016/j.jmaa.2007.07.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using a continuation theorem based on coincidence degree theory, we establish easily verifiable criteria for the existence of positive periodic solutions in delayed Gause-type predator-prey systems. Some known results are shown to be special cases of the presented paper. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1220 / 1230
页数:11
相关论文
共 19 条
[1]   Nonexistence of limit cycles in two classes of predator-prey systems [J].
Aghajani, A. ;
Moradifam, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) :356-365
[2]   Animal aggregations [J].
Allee, WC .
QUARTERLY REVIEW OF BIOLOGY, 1927, 2 (03) :367-398
[3]   PERIODIC-SOLUTIONS OF SINGLE-SPECIES MODELS WITH PERIODIC DELAY [J].
FREEDMAN, HI ;
WU, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (03) :689-701
[4]  
Gaines RE, 1977, COINCIDENCE DEGREE N, DOI DOI 10.1007/BFB0089537
[5]   GLOBAL MODELS OF GROWTH AND COMPETITION [J].
GILPIN, ME ;
AYALA, FJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (12) :3590-3593
[6]   ON THE OSCILLATION AND ASYMPTOTIC-BEHAVIOR OF N(T)=N(T)[A+BN(T-TAU)-CN2(T-TAU)] [J].
GOPALSAMY, K ;
LADAS, G .
QUARTERLY OF APPLIED MATHEMATICS, 1990, 48 (03) :433-440
[7]   Uniqueness of limit cycles in predator-prey system:: the role of weight functions [J].
Hasík, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) :130-141
[8]   GLOBAL STABILITY FOR A CLASS OF PREDATOR-PREY SYSTEMS [J].
HSU, SB ;
HUANG, TW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (03) :763-783
[9]   Existence of multiple positive periodic solutions of delayed predator-prey models with functional responses [J].
Hu, Xiaoling ;
Liu, Guirong ;
Yan, Jurang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (10-11) :1453-1462
[10]   Uniqueness of the limit cycle for cause-type predator-prey systems [J].
Hwang, TW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 238 (01) :179-195