Cotlar's inequality without the doubling condition and existence of principal values for the Cauchy integral of measures

被引:55
作者
Tolsa, X [1 ]
机构
[1] Univ Barcelona, Dept Matemat Aplicada & Anal, Barcelona 08071, Spain
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 1998年 / 502卷
关键词
D O I
10.1515/crll.1998.087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete geometric characterization of those positive measures mu on C such that for any complex finite measure v on C the principal value of the Cauchy integral of v, lim(epsilon-->0) integral(\y-x\>epsilon) 1/y-x dv(y), exists for mu-almost all x is an element of C. We also prove that the classical Cotlar's inequality holds for Calderon-Zygmund operators without assuming that the underlying measure on C is doubling. This allows us to show that the standard arguments for the L-p and weak (1,1) boundedness of the maximal operator work in this case with some slight modifications.
引用
收藏
页码:199 / 235
页数:37
相关论文
共 14 条