A two-dimensional network simulator for two-phase flow in porous media

被引:181
|
作者
Aker, E
Maloy, KJ
Hansen, A
Batrouni, GG
机构
[1] Univ Oslo, Dept Phys, N-0316 Oslo, Norway
[2] Norwegian Univ Sci & Technol, Dept Phys, N-7034 Trondheim, Norway
[3] IKU Petr Res, N-7034 Trondheim, Norway
[4] Univ Nice, Inst Nonlineaire Nice, F-06560 Valbonne, France
关键词
network modeling; immiscible; drainage displacement; two-phase flow; capillary and viscous forces; pressure simulations; scaling exponents; front width; time dependences;
D O I
10.1023/A:1006510106194
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We investigate a two-dimensional network simulator that model the dynamics of drainage dominated flow where film flow can be neglected. We present a new method for simulating the temporal evolution of the pressure due to capillary and viscous forces in the displacement process. To model the dynamics, we let the local capillary pressure change as if the menisci move in and out of hour-glass shaped tubes. Furthermore, a method has been developed to allow simultaneous flow of two liquids into one tube. The model is suitable to simulate different time dependencies in two-phase drainage displacements. In this paper, we simulate the temporal evolution of the fluid pressures and analyze the time dependence of the front between the two liquids. The front width was found to be consistent with a scaling relation w proportional to t(beta) h(t/t(s)). The dynamical exponent, beta, describing the front width evolution as function of time, was estimated to beta = 1.0. The results are compared to experimental data of Frette and co-workers.
引用
收藏
页码:163 / 186
页数:24
相关论文
共 50 条
  • [41] Characterization of two-phase flow in porous media using global mobility
    Wang, Lei
    Liu, Changwei
    Jiang, Ping
    Zhang, Hui
    Tian, Xiaoming
    Zhao, Nan
    Mahlalela, B. M.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 177 : 188 - 197
  • [42] On front solutions of the saturation equation of two-phase flow in porous media
    Hayek, Mohamed
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (19-20) : 4694 - 4704
  • [43] Numerical study on two-phase flow through fractured porous media
    HUANG ZhaoQin
    Science China(Technological Sciences), 2011, (09) : 2412 - 2420
  • [44] Equivalent Permeability and Simulation of Two-Phase Flow in Heterogeneous Porous Media
    B. Amaziane
    T. Hontans
    J.V. Koebbe
    Computational Geosciences, 2001, 5 : 279 - 300
  • [45] Effects of wettability on displacement efficiency of two-phase flow in porous media
    Wei G.
    Hu R.
    Liao Z.
    Chen Y.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (04): : 1008 - 1017
  • [46] Implicit linearization scheme for nonstandard two-phase flow in porous media
    Kassa, Abay Molla
    Kumar, Kundan
    Gasda, Sarah E.
    Radu, Florin A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (02) : 445 - 461
  • [47] Numerical simulation and homogenization of two-phase flow in heterogeneous porous media
    Ataie-Ashtiani, B
    Hassanizadeh, SM
    Oostrom, M
    White, MD
    GROUND WATER UPDATES, 2000, : 333 - 338
  • [48] Stochastic analysis of two-phase immiscible flow in stratified porous media
    Artus, Vincent
    Furtado, Frederico
    Noetinger, Benoit
    Pereira, Felipe
    COMPUTATIONAL & APPLIED MATHEMATICS, 2004, 23 (2-3): : 153 - 172
  • [49] Discontinuous approximation of viscous two-phase flow in heterogeneous porous media
    Burger, Raimund
    Kumar, Sarvesh
    Kumar Kenettinkara, Sudarshan
    Ruiz-Baier, Ricardo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 321 : 126 - 150
  • [50] Simulation of two-phase flow in porous media with sharp material discontinuities
    Tran, L. K.
    Kim, J. C.
    Matthai, S. K.
    ADVANCES IN WATER RESOURCES, 2020, 142