A comparative study of multi-objective optimization algorithms for sparse signal reconstruction

被引:11
作者
Erkoc, Murat Emre [1 ]
Karaboga, Nurhan [1 ]
机构
[1] Erciyes Univ, Elect & Elect Engn, TR-38039 Kayseri, Turkey
关键词
Multi-objective optimization; Compressed sensing; Sparse reconstruction; Evolutionary algorithm; Knee region; Local search method; EVOLUTIONARY ALGORITHMS; RECOVERY; DECOMPOSITION;
D O I
10.1007/s10462-021-10073-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The development of the efficient sparse signal recovery algorithm is one of the important problems of the compressive sensing theory. There exist many types of sparse signal recovery methods in compressive sensing theory. These algorithms are classified into several categories like convex optimization, non-convex optimization, and greedy methods. Lately, intelligent optimization techniques like multi-objective approaches have been used in compressed sensing. Firstly, in this paper, the basic principles of the compressive sensing theory are summarized. And then, brief information about multi-objective algorithms, local search methods, and knee point selection methods are given. Afterward, multi-objective sparse recovery methods in the literature are reviewed and investigated in accordance with their multi-objective optimization algorithm, the local search method, and the knee point selection method. Also in this study, examples of multi-objective sparse reconstruction methods are designed according to the existing studies. Finally, the designed algorithms are tested and compared by using various types of sparse reconstruction test problems.
引用
收藏
页码:3153 / 3181
页数:29
相关论文
共 63 条
[1]   Modenar: Multi-objective differential evolution algorithm for mining numeric association rules [J].
Alatas, Bilal ;
Akin, Erhan ;
Karci, Ali .
APPLIED SOFT COMPUTING, 2008, 8 (01) :646-656
[2]  
[Anonymous], 1985, Proceedings of an International Conference on Genetic Algorithms and their Applications
[3]  
Arjoune Y, 2017, 2017 IEEE 7TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE IEEE CCWC-2017
[4]   A simulated annealing-based multiobjective optimization algorithm: AMOSA [J].
Bandyopadhyay, Sanghamitra ;
Saha, Sriparna ;
Maulik, Ujjwal ;
Deb, Kalyanmoy .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (03) :269-283
[5]   IEEE-SPS and connexions - An open access education collaboration [J].
Baraniuk, Richard G. ;
Burrus, C. Sidney ;
Thierstein, E. Joel .
IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (06) :6-+
[6]   Iterative hard thresholding for compressed sensing [J].
Blumensath, Thomas ;
Davies, Mike E. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) :265-274
[7]   Iterative Thresholding for Sparse Approximations [J].
Blumensath, Thomas ;
Davies, Mike E. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :629-654
[8]   Finding knees in multi-objective optimization [J].
Branke, E ;
Deb, K ;
Dierolf, H ;
Osswald, M .
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN VIII, 2004, 3242 :722-731
[9]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[10]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592