Modification of projective synchronization for a class of fractional order chaotic system by using a single driving variable

被引:2
|
作者
Li Jian-Fen [1 ]
Li Nong [2 ]
Chen Chang-Xing [1 ]
机构
[1] Air Force Engn Univ, Inst Sci, Xian 710051, Peoples R China
[2] Air Force Engn Univ, Inst Engn, Xian 710038, Peoples R China
关键词
modified projective synchronization; single driving variable; fractional-order unified chaotic system; UNIFIED SYSTEM; ATTRACTORS;
D O I
10.7498/aps.59.7644
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Designing a suitable response system to a class of fractional order chaotic systems, we can realize the modification of projective synchronization for these systems by only transmitting a single variable. Since chaos synchronization can be achieved by transmitting the single variable from driving system to response system, this method is more practical. Numerical simulation of fractional order unified chaotic system demonstrates the effectiveness of the proposed method.
引用
收藏
页码:7644 / 7649
页数:6
相关论文
共 21 条
  • [1] LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2
    CAPUTO, M
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05): : 529 - &
  • [2] CHAREF A, 1992, IEEE T AUTOMAT CONTR, V37, P9
  • [3] Yet another chaotic attractor
    Chen, GR
    Ueta, T
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07): : 1465 - 1466
  • [4] CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM
    HARTLEY, TT
    LORENZO, CF
    QAMMER, HK
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08): : 485 - 490
  • [5] Chaos and hyperchaos in the fractional-order Rossler equations
    Li, CG
    Chen, GR
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 55 - 61
  • [6] Chaos in Chen's system with a fractional order
    Li, CP
    Peng, GJ
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 22 (02) : 443 - 450
  • [7] Modified projective synchronization of chaotic system
    Li, Guo-Hui
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 32 (05) : 1786 - 1790
  • [8] A hyperchaotic system and its fractional order circuit simulation
    Liu Chong-Xin
    [J]. ACTA PHYSICA SINICA, 2007, 56 (12) : 6865 - 6873
  • [9] LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
  • [10] 2