Finite regularity and Koszul algebras

被引:26
作者
Avramov, LL [1 ]
Peeva, I
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
D O I
10.1353/ajm.2001.0008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the positively graded commutative algebras over which the residue field module the homogeneous maximal ideal has finite Castelnuovo-Mumford regularity: they are the polynomial rings in finitely many indeterminates over Koszul algebras; this proves a conjecture of Avramov and Eisenbud. We also show that if the residue field of a finitely generated graded algebras has finite regularity, then so do all finitely generated graded modules.
引用
收藏
页码:275 / 281
页数:7
相关论文
共 10 条
  • [1] Avramov LL, 1998, PROG MATH, V166, P1
  • [2] SMALL HOMOMORPHISMS OF LOCAL RINGS
    AVRAMOV, LL
    [J]. JOURNAL OF ALGEBRA, 1978, 50 (02) : 400 - 453
  • [3] REGULARITY OF MODULES OVER A KOSZUL ALGEBRA
    AVRAMOV, LL
    EISENBUD, D
    [J]. JOURNAL OF ALGEBRA, 1992, 153 (01) : 85 - 90
  • [4] GULLIKSEN TH, 1968, ACTA MATH-UPPSALA, V120, P53
  • [5] GULLIKSEN TH, 1971, COMPOS MATH, V23, P251
  • [6] GULLIKSEN TH, 1969, QUEENS PAPERS PURE A, V20
  • [7] Priddy S., 1970, T AM MATH SOC, V152, P39, DOI [10.2307/1995637, DOI 10.1090/S0002-9947-1970-0265437-8]
  • [8] ROOS JE, 1993, CR ACAD SCI I-MATH, V316, P1123
  • [9] SCHOELLER C, 1967, CR ACAD SCI A MATH, V265, P768
  • [10] Tate J., 1957, ILLINOIS J MATH, V1, P14, DOI 10.1215/ijm/1255378502