Finite regularity and Koszul algebras

被引:26
作者
Avramov, LL [1 ]
Peeva, I
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
D O I
10.1353/ajm.2001.0008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the positively graded commutative algebras over which the residue field module the homogeneous maximal ideal has finite Castelnuovo-Mumford regularity: they are the polynomial rings in finitely many indeterminates over Koszul algebras; this proves a conjecture of Avramov and Eisenbud. We also show that if the residue field of a finitely generated graded algebras has finite regularity, then so do all finitely generated graded modules.
引用
收藏
页码:275 / 281
页数:7
相关论文
共 10 条
[1]  
Avramov LL, 1998, PROG MATH, V166, P1
[2]   SMALL HOMOMORPHISMS OF LOCAL RINGS [J].
AVRAMOV, LL .
JOURNAL OF ALGEBRA, 1978, 50 (02) :400-453
[3]   REGULARITY OF MODULES OVER A KOSZUL ALGEBRA [J].
AVRAMOV, LL ;
EISENBUD, D .
JOURNAL OF ALGEBRA, 1992, 153 (01) :85-90
[4]  
GULLIKSEN TH, 1968, ACTA MATH-UPPSALA, V120, P53
[5]  
GULLIKSEN TH, 1971, COMPOS MATH, V23, P251
[6]  
GULLIKSEN TH, 1969, QUEENS PAPERS PURE A, V20
[7]  
Priddy S., 1970, T AM MATH SOC, V152, P39, DOI [10.2307/1995637, DOI 10.1090/S0002-9947-1970-0265437-8]
[8]  
ROOS JE, 1993, CR ACAD SCI I-MATH, V316, P1123
[9]  
SCHOELLER C, 1967, CR ACAD SCI A MATH, V265, P768
[10]  
Tate J., 1957, ILLINOIS J MATH, V1, P14, DOI 10.1215/ijm/1255378502