Integral formula for the Bessel function of the first kind

被引:0
作者
De Michell, Enrico [1 ]
机构
[1] CNR, IBF, Via Marini 6, I-16149 Genoa, Italy
关键词
Bessel functions; Integral representations; Incomplete gamma function;
D O I
10.1007/s10231-021-01144-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a new integral formula for the Bessel function of the first kind J(mu)(z). This formula generalizes to any mu, z is an element of C the classical integral representations of Bessel and Poisson.
引用
收藏
页码:933 / 941
页数:9
相关论文
共 12 条
[1]  
Bohmer Paul Eugen, 1939, Differenzengleichung und Bestimmte Integrale
[2]   Integral Representation for Bessel's Functions of the First Kind and Neumann Series [J].
De Micheli, Enrico .
RESULTS IN MATHEMATICS, 2018, 73 (02)
[3]   The expansion in Gegenbauer polynomials: A simple method for the fast computation of the Gegenbauer coefficients [J].
De Micheli, Enrico ;
Viano, Giovanni Alberto .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 239 :112-122
[4]  
Erdelyi A, 1953, Bateman Manuscript Project: Higher Transcendental Functions, Volume, V1
[5]  
Gautschi Walter, 1998, Tricomi's Ideas and Contemporary Applied Mathematics, V147, P203
[6]  
Gradshteyn I. S., 1965, Tables of Integrals, Series, and Products
[7]  
Koronev BG., 2002, BESSEL FUNCTIONS THE, DOI [10.1201/b12551, DOI 10.1201/B12551]
[8]  
Olver F.W.J., NIST Digital Library of Mathematical Functions, DOI DOI 10.1103/PhysRevLett.113.010501
[9]  
Temme NM., 1996, Special Functions: An Introduction to Classical Functions of Mathematical Physics, DOI DOI 10.1002/9781118032572
[10]  
Tricomi F.G., 1950, Math. Z, V53, P136, DOI DOI 10.1007/BF01162409