Approximate analytical solutions of Klein-Gordon equation with Hulthen potentials for nonzero angular momentum

被引:64
作者
Chen, Chang-Yuan [1 ]
Sun, Dong-Sheng [1 ]
Lu, Fa-Lin [1 ]
机构
[1] Yancheng Teachers Coll, Dept Phys, Yancheng 224002, Peoples R China
关键词
Hulthen potential; Klein-Gordon equation; bound states; approximate analytical solution;
D O I
10.1016/j.physleta.2007.05.079
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the exponential function transformation approach along with an approximation for the centrifugal potential, the radial Klein-Gordon equation with the vector and scalar Hulthen potential is transformed to a hypergeometric differential equation. The approximate analytical solutions of bound states are attained for different l. The analytical energy equation and the unnormalized radial wave functions expressed in terms of hypergeometric polynomials are given. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:219 / 221
页数:3
相关论文
共 50 条
[31]   Approximate Analytical Solutions of the Schrodinger Equation with Hulthen Potential in the Global Monopole Spacetime [J].
Alves, Saulo S. ;
Cunha, Marcio M. ;
Hassanabadi, Hassan ;
Silva, Edilberto O. .
UNIVERSE, 2023, 9 (03)
[32]   Supersymmetric approach to approximate analytical solutions of the Klein-Gordon equation: application to a position-dependent mass and a hyperbolic cotangent vector potential [J].
N. Zaghou ;
F. Benamira .
Indian Journal of Physics, 2024, 98 :2093-2103
[33]   Bound state solutions of Klein-Gordon equation with Mobius square plus Yukawa potentials [J].
Antia, A. D. ;
Ikot, A. N. ;
Hassanabadi, H. ;
Maghsoodi, E. .
INDIAN JOURNAL OF PHYSICS, 2013, 87 (11) :1133-1139
[34]   Exact Solutions of the Klein-Gordon Equation with Hylleraas Potential [J].
Ikot, Akpan N. ;
Awoga, Oladunjoye A. ;
Ita, Benedict I. .
FEW-BODY SYSTEMS, 2012, 53 (3-4) :539-548
[35]   Exact solutions of coupled nonlinear Klein-Gordon equation [J].
Shang, Desheng .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) :1577-1583
[36]   On the Existence of Global Solutions for a Nonlinear Klein-Gordon Equation [J].
Polat, Necat ;
Taskesen, Hatice .
FILOMAT, 2014, 28 (05) :1073-1079
[37]   Superluminal solutions to the Klein-Gordon equation and a causality problem [J].
Borghardt, AA ;
Belogolovskii, MA ;
Karpenko, DY .
PHYSICS LETTERS A, 2003, 318 (4-5) :342-344
[38]   Analytical Solutions of the Klein-Gordon equation and Fisher information with Inversely Quadratic Hellman potential [J].
Njoku, I. J. ;
Onyenegecha, C. P. ;
Okereke, C. J. .
CHINESE JOURNAL OF PHYSICS, 2022, 79 :436-450
[39]   Algebraic Approach for Shape Invariant Potentials in Klein-Gordon Equation [J].
M. R. Setare ;
O. Hatami .
International Journal of Theoretical Physics, 2009, 48 :2977-2986
[40]   Exactly solvable potentials of the Klein-Gordon equation with the supersymmetry method [J].
Chen, G ;
Chen, ZD ;
Xuan, PC .
PHYSICS LETTERS A, 2006, 352 (4-5) :317-320