Field Emission Property of Double-walled Carbon Nanotubes Related to Purification and Transmittance

被引:3
|
作者
Ahn, KiTae [1 ]
Jang, HyunChul [1 ]
Lyu, SeungChul [2 ]
Lee, Hansung [3 ]
Lee, Naesung [3 ]
Han, Moonsup [4 ]
Park, Yunsun [5 ]
Hong, Wanshick [1 ,2 ]
Park, Kyoungwan [1 ,2 ]
Sok, Junghyun [1 ,2 ]
机构
[1] Univ Seoul, Dept Nano Sci & Technol, Seoul 130743, South Korea
[2] Univ Seoul, Dept Nanotechnol, Seoul 130743, South Korea
[3] Sejong Univ, Fac Nanotechnol & Adv Mat Engn, Seoul 143747, South Korea
[4] Univ Seoul, Dept Phys, Seoul 130743, South Korea
[5] Myongi Univ, Dept Ind & Management Engn, Yongin 447827, South Korea
来源
关键词
nanostructured materials; vapor deposition; electrical properties; Raman spectroscopy; carbon nanotube; EMITTERS; DISPLAY;
D O I
10.3365/KJMM.2011.49.1.079
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Double-walled carbon nanotubes (DWCNTs) with high purity were produced by the catalytic decomposition of tetrahydrofuran (THF) using a Fe-Mo/MgO catalyst at 800 degrees C. The as-synthesized DWCNTs typically have catalytic impurities and amorphous carbon, which were removed by a two-step purification process consisting of acid treatment and oxidation. In the acid treatment, metallic catalysts were removed in HCl at room temperature for 5 hr with magnetic stirring. Subsequently, the oxidation, using air at 380 degrees C for 5 hr in the a vertical-type furnace, was used to remove the amorphous carbon particles. The DWCNT suspension was prepared by dispersing the purified DWCNTs in the aqueous sodium dodecyl sulfate solution with horn-type sonication. This was then air-sprayed on ITO glass to fabricate DWCNT field emitters. The field emission properties of DWCNT films related to transmittance were studied. This study provides the possibility of the application of large-area transparent CNT field emission cathodes.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 50 条
  • [1] Magnetic field effects of double-walled carbon nanotubes
    Latge, A.
    Grimm, D.
    Ferreira, M. S.
    BRAZILIAN JOURNAL OF PHYSICS, 2006, 36 (3B) : 898 - 901
  • [2] Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles
    Liu, Chunli
    Kim, Kwang Sub
    Baek, Jihye
    Cho, Youngmi
    Han, Seunywu
    Kim, Soo-Won
    Min, Nam-Ki
    Choi, Youngmin
    Kim, Jong-Ung
    Lee, Cheol Jin
    CARBON, 2009, 47 (04) : 1158 - 1164
  • [3] Bromination of Double-Walled Carbon Nanotubes
    Bulusheva, L. G.
    Okotrub, A. V.
    Flahaut, E.
    Asanov, I. P.
    Gevko, P. N.
    Koroteev, V. O.
    Fedoseeva, Yu. V.
    Yaya, A.
    Ewels, C. P.
    CHEMISTRY OF MATERIALS, 2012, 24 (14) : 2708 - 2715
  • [4] Double-Walled Carbon Nanotubes as Nanosyringes
    Hilder, Tamsyn A.
    Hill, James M.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2008, 5 (11) : 2153 - 2159
  • [5] Fluorination of double-walled carbon nanotubes
    Muramatsu, H
    Kim, YA
    Hayashi, T
    Endo, M
    Yonemoto, A
    Arikai, H
    Okino, F
    Touhara, H
    CHEMICAL COMMUNICATIONS, 2005, (15) : 2002 - 2004
  • [6] Selective optical property modification of double-walled carbon nanotubes by fluorination
    Hayashi, Takuya
    Shimamoto, Daisuke
    Kim, Yoong Ahm
    Muramatsu, Hiroyuki
    Okino, Fujio
    Touhara, Hidekazu
    Shimada, Takashi
    Miyauchi, Yuhei
    Maruyama, Shigeo
    Terrones, Mauricio
    Dresselhaus, Mildred S.
    Endo, Morinobu
    ACS NANO, 2008, 2 (03) : 485 - 488
  • [7] Preparation of double-walled carbon nanotubes
    Jiang, B
    Wei, JQ
    Ci, LJ
    Wu, DH
    CHINESE SCIENCE BULLETIN, 2004, 49 (01): : 107 - 110
  • [8] Classification for double-walled carbon nanotubes
    Charlier, A
    McRae, E
    Heyd, R
    Charlier, MF
    Moretti, D
    CARBON, 1999, 37 (11) : 1779 - 1783
  • [9] Preparation of double-walled carbon nanotubes
    JIANG Bin
    Institute of Physics
    ChineseScienceBulletin, 2004, (01) : 107 - 110
  • [10] Ferromagnetism of double-walled carbon nanotubes
    Yan, Der-Chung
    Chen, Shih-Yun
    Wu, Maw-Kuen
    Chi, C. C.
    Chao, J. H.
    Green, Malcolm L. H.
    APPLIED PHYSICS LETTERS, 2010, 96 (24)