About Chaotic Dynamics in the Twisted Horseshoe Map

被引:2
作者
Sovrano, Elisa [1 ]
机构
[1] Univ Udine, Dept Math & Comp Sci, Via Sci 206, I-33100 Udine, Italy
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2016年 / 26卷 / 06期
关键词
Chaotic dynamics; discrete dynamical systems; stretching along the paths method; twisted horseshoe map; DIFFERENCE-EQUATIONS; DIMENSIONS; THEOREM; SYSTEMS; POINTS;
D O I
10.1142/S0218127416500929
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The twisted horseshoe map was developed in order to study a class of density dependent Leslie population models with two age classes. From the beginning, scientists have tried to prove that this map presents chaotic dynamics. Some demonstrations that have appeared in mathematical literature present some difficulties or delicate issues. In this paper, we give a simple and rigorous proof based on a different approach. We also highlight the possibility of getting chaotic dynamics for a broader class of maps.
引用
收藏
页数:10
相关论文
共 38 条
  • [11] DYNAMICS OF DENSITY DEPENDENT POPULATION MODELS
    GUCKENHEIMER, J
    OSTER, G
    IPAKTCHI, A
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1977, 4 (02) : 101 - 147
  • [12] A chaos lemma
    Kennedy, J
    Koçak, S
    Yorke, JA
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (05) : 411 - 423
  • [13] Topological horseshoes
    Kennedy, J
    Yorke, JA
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) : 2513 - 2530
  • [14] ON THE DEFINITION OF CHAOS
    KIRCHGRABER, U
    STOFFER, D
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (07): : 175 - 185
  • [15] CHAOTIC DIFFERENCE-EQUATIONS IN RN
    KLOEDEN, PE
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1981, 31 (AUG): : 217 - 225
  • [16] Li-Yorke chaos in higher dimensions: a review
    Kloeden, Peter
    Li, Zhong
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (3-4) : 247 - 269
  • [17] KOLYADA SF, 2004, UKR MAT ZH, V56, P1043
  • [18] PERIOD 3 IMPLIES CHAOS
    LI, TY
    YORKE, JA
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) : 985 - 992
  • [19] Chaos in Discrete Structured Population Models
    Liz, Eduardo
    Ruiz-Herrera, Alfonso
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (04): : 1200 - 1214
  • [20] BIOLOGICAL POPULATIONS WITH NONOVERLAPPING GENERATIONS - STABLE POINTS, STABLE CYCLES, AND CHAOS
    MAY, RM
    [J]. SCIENCE, 1974, 186 (4164) : 645 - 647