Oblique projections in atomic spaces

被引:60
作者
Aldroubi, A
机构
关键词
oblique projection; biorthogonal multiwavelet; multiwavelets; unitary operators; Riese basis;
D O I
10.1090/S0002-9939-96-03255-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a Hilbert space, O a unitary operator on H, and {phi(i)}(i=1,...,tau). tau vectors in H. We construct an atomic subspace U subset of H: [GRAPHICS] We give the necessary and sufficient conditions for U to be a well-defined, closed subspace of H with {O-k phi(i)}(i=1,...,tau, k is an element of Z) consider the oblique projection P-U perpendicular to V on the space U(O,{phi(U)(i)}(i=1,...,tau)) in a direction orthogonal to V(O, {phi(U)i}(i=1,...,tau)). We give the necessary and sufficient conditions on O, {phi(U)(i)}(i=1,...,tau), and {phi(V)(i)}(i=1,...,tau) for P-U perpendicular to V to be well defined. The results can be used to construct biorthogonal multiwavelets in various spaces. They can also be used to generalize the Shannon-Whittaker theory on uniform sampling.
引用
收藏
页码:2051 / 2060
页数:10
相关论文
共 20 条
[11]   WAVELETS IN WANDERING SUBSPACES [J].
GOODMAN, TNT ;
LEE, SL ;
TANG, WS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (02) :639-654
[12]   ON THE LINEAR PREDICTION OF MULTIVARIATE (2,P)-BOUNDED PROCESSES [J].
HOUDRE, C .
ANNALS OF PROBABILITY, 1991, 19 (02) :843-867
[14]  
Meyer Y., 1990, ONDELETTES OPERATEUR
[15]  
Michalewicz Z., 1991, STAT COMPUT, V1, P75, DOI [DOI 10.1007/BF01889983, 10.1007/bf01889983]
[16]  
STRANG G, 1973, FOURIER ANAL FINITE, P793
[17]  
STRELA V, 1994, P SOC PHOTO-OPT INS, V2303, P202, DOI 10.1117/12.188771
[18]   QUADRATURE-FORMULAS AND ASYMPTOTIC ERROR EXPANSIONS FOR WAVELET APPROXIMATIONS OF SMOOTH FUNCTIONS [J].
SWELDENS, W ;
PIESSENS, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :1240-1264
[19]   A GENERAL SAMPLING THEORY FOR NONIDEAL ACQUISITION DEVICES [J].
UNSER, M ;
ALDROUBI, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :2915-2925
[20]  
VRHEL MJ, 1994, WAVELET APPL SIGNAL, P188