Oblique projections in atomic spaces

被引:60
作者
Aldroubi, A
机构
关键词
oblique projection; biorthogonal multiwavelet; multiwavelets; unitary operators; Riese basis;
D O I
10.1090/S0002-9939-96-03255-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a Hilbert space, O a unitary operator on H, and {phi(i)}(i=1,...,tau). tau vectors in H. We construct an atomic subspace U subset of H: [GRAPHICS] We give the necessary and sufficient conditions for U to be a well-defined, closed subspace of H with {O-k phi(i)}(i=1,...,tau, k is an element of Z) consider the oblique projection P-U perpendicular to V on the space U(O,{phi(U)(i)}(i=1,...,tau)) in a direction orthogonal to V(O, {phi(U)i}(i=1,...,tau)). We give the necessary and sufficient conditions on O, {phi(U)(i)}(i=1,...,tau), and {phi(V)(i)}(i=1,...,tau) for P-U perpendicular to V to be well defined. The results can be used to construct biorthogonal multiwavelets in various spaces. They can also be used to generalize the Shannon-Whittaker theory on uniform sampling.
引用
收藏
页码:2051 / 2060
页数:10
相关论文
共 20 条
[1]   SAMPLING PROCEDURES IN FUNCTION-SPACES AND SYMPTOTIC EQUIVALENCE WITH SHANNON SAMPLING THEORY [J].
ALDROUBI, A ;
UNSER, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (1-2) :1-21
[2]  
ALDROUBI A, 1994, P SOC PHOTO-OPT INS, V2303, P36, DOI 10.1117/12.188795
[3]   FAMILIES OF MULTIRESOLUTION AND WAVELET SPACES WITH OPTIMAL PROPERTIES [J].
ALDROUBI, A ;
UNSER, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (5-6) :417-446
[4]  
BENEDETTO JJ, 1993, WAVELETS MATH APPL
[5]  
BERENSTEIN CA, 1990, EXACT DECONVOLUTION, P723
[6]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[7]  
Daubechies I., 1992, 10 LECT WAVELETS
[8]   APPROXIMATION FROM SHIFT-INVARIANT SUBSPACES OF L(2(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (02) :787-806
[9]  
DONOVAN G, 1994, P SOC PHOTO-OPT INS, V2303, P238, DOI 10.1117/12.188809
[10]  
FEICHTINGER HG, 1991, SPIE C VISUAL COMM I, P766