The Sheffer group and the Riordan group

被引:60
作者
He, Tian-Xiao [1 ]
Hsu, Leetsch C.
Shiue, Peter J. -S.
机构
[1] Illinois Wesleyan Univ, Dept Math & Comp Sci, Bloomington, IL 61702 USA
[2] Dalian Univ Technol, Dept Math, Dalian 116024, Peoples R China
[3] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
formal power series; Sheffer group; Sheffer-type polynomials; Sheffer-type differential operators generalized weighted Stirling numbers; Riodan array; Riordan group;
D O I
10.1016/j.dam.2007.04.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the Sheffer group of all Sheffer-type polynomials and prove the isomorphism between the Sheffer group and the Riordan group. An equivalence of the Riordan array pair and generalized Stirling number pair is also presented. Finally, we discuss a higher dimensional extension of Riordan array pairs. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1895 / 1909
页数:15
相关论文
共 19 条
[1]  
[Anonymous], ANN COMBINATORICS
[2]   THE R-STIRLING NUMBERS [J].
BRODER, AZ .
DISCRETE MATHEMATICS, 1984, 49 (03) :241-259
[3]  
CARLITZ L, 1980, FIBONACCI QUART, V18, P147
[4]   A multivariate Faa di Bruno formula with applications [J].
Constantine, GM ;
Savits, TH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (02) :503-520
[5]  
He TX, 2006, BULL INST MATH ACAD, V1, P451
[6]   DEGENERATE WEIGHTED STIRLING NUMBERS [J].
HOWARD, FT .
DISCRETE MATHEMATICS, 1985, 57 (1-2) :45-58
[7]  
HSU LC, 1987, FIBONACCI QUART, V25, P346
[8]   A unified approach to generalized Stirling numbers [J].
Hsu, LC ;
Shiue, PJS .
ADVANCES IN APPLIED MATHEMATICS, 1998, 20 (03) :366-384
[9]  
Liu YZ, 1998, CHINESE CHEM LETT, V9, P827
[10]   ON FABER POLYNOMIALS [J].
SCHUR, I .
AMERICAN JOURNAL OF MATHEMATICS, 1945, 67 (01) :33-41