On self-excited auto-parametric systems

被引:4
作者
Abadi [1 ]
机构
[1] Univ Utrecht, Dept Math, NL-3508 TA Utrecht, Netherlands
关键词
auto-parametric; self-excited; stability; bifurcation;
D O I
10.1023/A:1008328100880
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We consider a Rayleigh type of self-excited auto-parametric system. We study the semi-trivial solution and its domain of instability where non-trivial solutions are initiated. We are interested in the existence and stability of the non-trivial solutions and we analyze the behaviour of the solutions by examining it for various values of some parameters. We divide the discussion on the non-trivial solution in exact resonance and near resonance cases. In the analysis we use both normal forms (or averaging) and numerical bifurcation path-following techniques. The system displays a rich pattern of different bifurcations, a robust heteroclinic cycle and instability behaviour.
引用
收藏
页码:147 / 166
页数:20
相关论文
共 15 条
  • [1] BUCKENHEIMER J, 1997, APPL MATH SCI, V42
  • [2] Carr J., 1981, APPL CTR MANIFOLD TH, DOI [10.1007/978-1-4612-5929-9, DOI 10.1007/978-1-4612-5929-9]
  • [3] ASYMPTOTIC STABILITY OF HETEROCLINIC CYCLES IN SYSTEMS WITH SYMMETRY
    KRUPA, M
    MELBOURNE, I
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 : 121 - 147
  • [4] Robust heteroclinic cycles
    Krupa, M
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (02) : 129 - 176
  • [5] Kuznetsov Y.A., 2013, Elements of Applied Bifurcation Theory
  • [6] NABERGOJ R, 1996, P EUROMECH 2 EUR NON, P151
  • [7] RUIJGROK M, 1995, THESIS UTRECHT U
  • [8] Sanders JA, 1985, APPL MATH SCI, V59, DOI 10.1007/978-1-4757-4575-7
  • [9] SCHMIDT G, 1986, NONLINEAR VIBRATIONS
  • [10] SWIFT JW, 1984, CONT MATH, V28, P435