Topological reduction of information systems

被引:31
作者
Lashin, EF [1 ]
Medhat, T [1 ]
机构
[1] Tanta Univ, Fac Engn, Dept Phys & Engn Math, Tanta 31521, Egypt
关键词
D O I
10.1016/j.chaos.2004.09.107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main task of the present work is to apply some methods for knowledge reductions in the case of knowledge based on equivalence relations. Topological techniques are applied to construct knowledge bases via general relations. Topological structures are used to obtain discernibility matrix and discernibility function for knowledge reduction and decision making. Topology plays a significant role in quantum physics, high energy physics, and superstring theory. Reduction of attributes can be applied in the process of compactification of space time dimensions. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:277 / 286
页数:10
相关论文
共 12 条
[1]  
Aisling Mc, 1997, TOPOLOGY COURSE LECT
[2]  
CHRISTIAN H, 2003, INFORMATION NEW LANG
[3]  
El Naschie M. S., 1992, Chaos, Solitons and Fractals, V2, P91, DOI 10.1016/0960-0779(92)90050-W
[4]   The symplictic vacuum, exotic quasi particles and gravitational instanton [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :1-11
[5]   Quantum gravity, Clifford algebras, fuzzy set theory and the fundamental constants of nature [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 20 (03) :437-450
[6]  
El Naschie MS, 1996, CHAOS SOLITONS FRACT, V7
[7]  
El-Monsef M.A., 2003, P 4 NUCL PART PHYS
[8]  
Ohrn Aleksander, 1999, THESIS TRONDHEIM NOR
[9]   ROUGH SETS [J].
PAWLAK, Z .
INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1982, 11 (05) :341-356
[10]  
Pawlak Z., 1991, Rough sets: Theoretical aspects of reasoning about data, DOI DOI 10.1007/978-94-011-3534-4