Metal-Organic Frameworks Derived Catalyst for High-Performance Vanadium Redox Flow Batteries

被引:7
作者
Ou, Yun-Ting [1 ]
Kabtamu, Daniel Manaye [1 ,2 ]
Bayeh, Anteneh Wodaje [1 ,3 ]
Ku, Hung-Hsien [4 ]
Kuo, Yu-Lin [5 ]
Wang, Yao-Ming [6 ]
Hsu, Ning-Yih [4 ]
Chiang, Tai-Chin [7 ]
Huang, Hsin-Chih [7 ]
Wang, Chen-Hao [1 ,8 ,9 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Mat Sci & Engn, Tainan 106335, Taiwan
[2] Debre Berhan Univ, Dept Chem, POB 445, Debre Berhan, Ethiopia
[3] Addis Ababa Inst Technol AAiT, Sch Chem & Bioengn, King George VI St,POB 385, Addis Ababa, Ethiopia
[4] Inst Nucl Energy Res, Atom Energy Council, Execut Yuan, Div Chem, Taoyuan 325207, Taiwan
[5] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Tainan 106335, Taiwan
[6] Met Ind Res & Dev Ctr, Ind Upgrading Sci & Technol, Kaohsiung 811160, Taiwan
[7] Natl Taiwan Univ Sci & Technol, Global Dev Engn Program, Tainan 106335, Taiwan
[8] Natl Cheng Kung Univ, Hierarch Green Energy Mat HiGEM Res Ctr, Tainan 701401, Taiwan
[9] Natl Taiwan Univ Sci & Technol, Ctr Automat & Control, Taipei 106335, Taiwan
关键词
energy storage device; vanadium redox flow battery; metal-organic frameworks; graphite felt electrode; energy efficiency; WALLED CARBON NANOTUBES; MODIFIED GRAPHITE FELT; POSITIVE ELECTRODE; TUNGSTEN TRIOXIDE; VO2+/VO2+; ELECTROCATALYST; COMPOSITE; PAPER; OXIDE; CELL;
D O I
10.3390/catal11101188
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vanadium redox flow battery (VRFB) is one of the most promising technologies for grid-scale energy storage applications because of its numerous attractive features. In this study, metal-organic frameworks (MOF)-derived catalysts (MDC) are fabricated using carbonization techniques at different sintering temperatures. Zirconium-based MOF-derived catalyst annealed at 900 & DEG;C exhibits the best electrochemical activity toward VO2+/VO2+ redox couple among all samples. Furthermore, the charge-discharge test confirms that the energy efficiency (EE) of the VRFB assembled with MOF-derived catalyst modified graphite felt (MDC-GF-900) is 3.9% more efficient than the VRFB using the pristine graphite felt at 100 mA cm(-2). Moreover, MDC-GF-900 reveals 31% and 107% higher capacity than the pristine GF at 80 and 100 mA cm(-2), respectively. The excellent performance of MDC-GF-900 results from the existence of oxygen-containing groups active sites, graphite structure with high conductivity embedded with zirconium oxide, and high specific surface area, which are critical points for promoting the vanadium redox reactions. Because of these advantages, MDC-GF-900 also possesses superior stability performance, which shows no decline of EE even after 100 cycles at 100 mA cm(-2).</p>
引用
收藏
页数:15
相关论文
共 45 条
  • [1] A novel approach for forming carbon nanorods on the surface of carbon felt electrode by catalytic etching for high-performance vanadium redox flow battery
    Abbas, Saleem
    Lee, Hyuck
    Hwang, Jinyeon
    Mehmood, Asad
    Shin, Hyun-Jin
    Mehboob, Sheeraz
    Lee, Ju-Young
    Ha, Heung Yong
    [J]. CARBON, 2018, 128 : 31 - 37
  • [2] Carbon and metal-based catalysts for vanadium redox flow batteries: a perspective and review of recent progress
    Bayeh, Anteneh Wodaje
    Kabtamu, Daniel Manaye
    Chang, Yu-Chung
    Wondimu, Tadele Hunde
    Huang, Hsin-Chih
    Wang, Chen-Hao
    [J]. SUSTAINABLE ENERGY & FUELS, 2021, 5 (06) : 1668 - 1707
  • [3] Oxygen-Vacancy-Rich Cubic CeO2 Nanowires as Catalysts for Vanadium Redox Flow Batteries
    Bayeh, Anteneh Wodaje
    Lin, Guan-Yi
    Chang, Yu-Chung
    Kabtamu, Daniel Manaye
    Chen, Guan-Cheng
    Chen, Hsueh-Yu
    Wang, Kai-Chin
    Wang, Yao-Ming
    Chiang, Tai-Chin
    Huang, Hsin-Chih
    Wang, Chen-Hao
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (45): : 16757 - 16765
  • [4] Hydrogen-Treated Defect-Rich W18O49 Nanowire-Modified Graphite Felt as High-Performance Electrode for Vanadium Redox Flow Battery
    Bayeh, Anteneh Wodaje
    Kabtamu, Daniel Manaye
    Chang, Yu-Chung
    Chen, Guan-Cheng
    Chen, Hsueh-Yu
    Liu, Ting-Ruei
    Wondimu, Tadele Hunde
    Wang, Kai-Chin
    Wang, Chen-Hao
    [J]. ACS APPLIED ENERGY MATERIALS, 2019, 2 (04) : 2541 - 2551
  • [5] Synergistic effects of a TiNb2O7-reduced graphene oxide nanocomposite electrocatalyst for highperformance all- vanadium redox flow batteries
    Bayeh, Anteneh Wodaje
    Kabtamu, Daniel Manaye
    Chang, Yu-Chung
    Chen, Guan-Cheng
    Chen, Hsueh-Yu
    Lin, Guan-Yi
    Liu, Ting-Ruei
    Wondimu, Tadele Hunde
    Wang, Kai-Chin
    Wang, Chen-Hao
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (28) : 13908 - 13917
  • [6] Ta2O5-Nanoparticle-Modified Graphite Felt As a High-Performance Electrode for a Vanadium Redox Flow Battery
    Bayeh, Anteneh Wodaje
    Kabtamu, Daniel Manaye
    Chang, Yu-Chung
    Chen, Guan-Cheng
    Chen, Hsueh-Yu
    Lin, Guan-Yi
    Liu, Ting-Ruei
    Wondimu, Tadele Hunde
    Wang, Kai-Chin
    Wang, Chen-Hao
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (03): : 3019 - 3028
  • [7] Characterizing Graphitic Carbon with X-ray Photoelectron Spectroscopy: A Step-by-Step Approach
    Blume, Raoul
    Rosenthal, Dirk
    Tessonnier, Jean-Philippe
    Li, Henan
    Knop-Gericke, Axel
    Schloegl, Robert
    [J]. CHEMCATCHEM, 2015, 7 (18) : 2871 - 2881
  • [8] Metal-Organic Framework-Derived Non-Precious Metal Nanocatalysts for Oxygen Reduction Reaction
    Fu, Shaofang
    Zhu, Chengzhou
    Song, Junhua
    Du, Dan
    Lin, Yuehe
    [J]. ADVANCED ENERGY MATERIALS, 2017, 7 (19)
  • [9] Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction
    Ge, Zhijun
    Wang, Ling
    He, Zhangxing
    Li, Yuehua
    Jiang, Yingqiao
    Meng, Wei
    Dai, Lei
    [J]. APPLIED SURFACE SCIENCE, 2018, 436 : 1030 - 1037
  • [10] A porous, electrically conductive hexa-zirconium( IV)metal-organic framework
    Goswami, Subhadip
    Ray, Debmalya
    Otake, Ken-ichi
    Kung, Chung-Wei
    Garibay, Sergio J.
    Islamoglu, Timur
    Atilgan, Ahmet
    Cui, Yuexing
    Cramer, Christopher J.
    Farha, Omar K.
    Hupp, Joseph T.
    [J]. CHEMICAL SCIENCE, 2018, 9 (19) : 4477 - 4482