Immortalized cells as experimental models to study cancer

被引:13
作者
Boehm, JS
Hahn, WC
机构
[1] Brigham & Womens Hosp, Dept Med, Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[4] MIT, Broad Inst, Cambridge, MA 02139 USA
[5] Harvard Univ, Cambridge, MA 02138 USA
关键词
cancer; hTERT; immortalization; model systems; oncogenes; telomerase; telomeres; transformation; tumor suppressor genes;
D O I
10.1007/s10616-004-5125-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The development of cancer is a multi-step process in which normal cells sustain a series of genetic alterations that together program the malignant phenotype. Much of our knowledge of cancer biology results from the detailed study of specimens and cell lines derived from patient tumors. While these approaches continue to yield critical information regarding the identity, number, and types of alterations found in human tumors, further progress in understanding the molecular basis of malignant transformation depends upon the generation and use of increasingly sophisticated experimental models of cancer. Over the past several years, the recognition that telomeres and telomerase play essential roles in regulating cell lifespan now permits the development of new models of human cancer. Here we review recent progress in the use of immortalized human cells as a foundation for understanding the molecular basis of cancer.
引用
收藏
页码:47 / 59
页数:13
相关论文
共 104 条
[1]   Refractory nature of normal human diploid fibroblasts with respect to oncogene-mediated transformation [J].
Akagi, T ;
Sasai, K ;
Hanafusa, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (23) :13567-13572
[2]   Pot1, the putative telomere end-binding protein in fission yeast and humans [J].
Baumann, P ;
Cech, TR .
SCIENCE, 2001, 292 (5519) :1171-1175
[3]   Normal human fibroblasts are resistant to RAS-induced senescence [J].
Benanti, JA ;
Galloway, DA .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (07) :2842-2852
[4]   SV40 SMALL T-ANTIGEN ENHANCES THE TRANSFORMATION ACTIVITY OF LIMITING CONCENTRATIONS OF SV40 LARGE T-ANTIGEN [J].
BIKEL, I ;
MONTANO, X ;
AGHA, ME ;
BROWN, M ;
MCCORMACK, M ;
BOLTAX, J ;
LIVINGSTON, DM .
CELL, 1987, 48 (02) :321-330
[5]   Switching and signaling at the telomere [J].
Blackburn, EH .
CELL, 2001, 106 (06) :661-673
[6]   Telomere shortening and tumor formation by mouse cells lacking telomerase RNA [J].
Blasco, MA ;
Lee, HW ;
Hande, MP ;
Samper, E ;
Lansdorp, PM ;
DePinho, RA ;
Greider, CW .
CELL, 1997, 91 (01) :25-34
[7]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[8]   INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence [J].
Brookes, S ;
Rowe, J ;
Ruas, M ;
Llanos, S ;
Clark, PA ;
Lomax, M ;
James, MC ;
Vatcheva, R ;
Bates, S ;
Vousden, KH ;
Parry, D ;
Gruis, N ;
Smit, N ;
Bergman, W ;
Peters, G .
EMBO JOURNAL, 2002, 21 (12) :2936-2945
[9]   Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines [J].
Bryan, TM ;
Englezou, A ;
DallaPozza, L ;
Dunham, MA ;
Reddel, RR .
NATURE MEDICINE, 1997, 3 (11) :1271-1274
[10]   Cellular senescence as a tumor-suppressor mechanism [J].
Campisi, J .
TRENDS IN CELL BIOLOGY, 2001, 11 (11) :S27-S31