Functional Reconstitution of an ABC Transporter in Nanodiscs for Use in Electron Paramagnetic Resonance Spectroscopy

被引:60
|
作者
Alvarez, Frances Joan D. [1 ]
Orelle, Cedric [1 ]
Davidson, Amy L. [1 ]
机构
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47906 USA
关键词
PHOSPHOLIPID-BILAYER NANODISCS; MALTOSE-BINDING PROTEIN; MEMBRANE-PROTEINS; DISTANCE MEASUREMENTS; ATP; INTERMEDIATE; DETERGENTS; MECHANISM; EPR;
D O I
10.1021/ja104047c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electron paramagnetic resonance (EPR) spectroscopy is a powerful biophysical technique for study of the structural dynamics of membrane proteins. Many of these proteins interact with ligands or proteins on one or both sides of the membrane. Membrane proteins are typically reconstituted in proteoliposomes to observe their function in a physiologically relevant environment. However, membrane proteins can insert into liposomes in two different orientations, and surfaces facing the lumen of the vesicle can be inaccessible to ligands. This heterogeneity can lead to subpopulations that do not respond to ligand binding, complicating EPA spectral analysis, particularly for distance measurements. Using the well-characterized maltose transporter, an ATP binding cassette (ABC) transporter that interacts with ligands on both sides of the membrane, we provide evidence that reconstitution into nanodiscs, which are soluble disk-shaped phospholipid bilayers, is an ideal solution to these problems. We describe the functional reconstitution of the maltose transporter into nanodiscs and demonstrate that this system is ideally suited to study conformational changes and intramolecular distances by EPR.
引用
收藏
页码:9513 / 9515
页数:3
相关论文
共 50 条
  • [11] Identification of irradiated cashew nut by electron paramagnetic resonance spectroscopy
    Sanyal, Bhaskar
    Sajilata, M. G.
    Chatterjee, Suchandra
    Singhal, Rekha S.
    Variyar, Prasad S.
    Kamat, M. Y.
    Sharma, Arun
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2008, 56 (19) : 8987 - 8991
  • [12] Mitochondria respiratory chain studied by electron paramagnetic resonance spectroscopy
    Mao, Jieli
    Zhang, Qi
    Shi, Fazhan
    Su, Jihu
    Du, Jiangfeng
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (05): : 339 - 345
  • [13] Monitoring of In Vitro Fat Digestion by Electron Paramagnetic Resonance Spectroscopy
    Andrea Rübe
    Sandra Klein
    Karsten Mäder
    Pharmaceutical Research, 2006, 23 : 2024 - 2029
  • [14] Novel multisample dielectric resonators for electron paramagnetic resonance spectroscopy
    Golovina, Iryna S.
    Kolesnik, Sergiy P.
    Geifman, Ilia N.
    Belous, Anatoliy G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (04)
  • [15] Introduction to spin label electron paramagnetic resonance spectroscopy of proteins
    Melanson, Michelle
    Sood, Abha
    Toeroek, Fanni
    Toeroek, Marianna
    BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION, 2013, 41 (03) : 156 - 162
  • [16] Monitoring of in vitro fat digestion by electron paramagnetic resonance spectroscopy
    Ruebe, Andrea
    Klein, Sandra
    Maeder, Karsten
    PHARMACEUTICAL RESEARCH, 2006, 23 (09) : 2024 - 2029
  • [17] Use of Electron Paramagnetic Resonance To Solve Biochemical Problems
    Sahu, Indra D.
    McCarrick, Robert M.
    Lorigan, Gary A.
    BIOCHEMISTRY, 2013, 52 (35) : 5967 - 5984
  • [18] Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser
    Takahashi, S.
    Brunel, L. -C.
    Edwards, D. T.
    van Tol, J.
    Ramian, G.
    Han, S.
    Sherwin, M. S.
    NATURE, 2012, 489 (7416) : 409 - 413
  • [19] Nuclear Spin-Flip Satellites in Electron Paramagnetic Resonance Spectroscopy
    Weil, John A.
    Howarth, David F.
    APPLIED MAGNETIC RESONANCE, 2010, 38 (01) : 85 - 93
  • [20] Application of electron paramagnetic resonance spectroscopy to examination of carbonized coal blends
    Pilawa, B.
    Pusz, S.
    Krzesinska, M.
    Koszorek, A.
    Kwiecinska, B.
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2009, 77 (3-4) : 372 - 376