On Compact Manifolds with Harmonic Curvature and Positive Scalar Curvature

被引:8
作者
Fu, Hai-Ping [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
关键词
Einstein manifold; Harmonic curvature; Rigidity;
D O I
10.1007/s12220-017-9798-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-n (n >= 3) be an n-dimensional compact Riemannian manifold with harmonic curvature and positive scalar curvature. Assume that M-n satisfies some integral pinching conditions. We give some rigidity theorems. In particular, Theorems 1.4 and 1.10 are sharp for our conditions have the additional properties of being sharp. By this, we mean that we can precisely characterize the case of equality.
引用
收藏
页码:3120 / 3139
页数:20
相关论文
共 32 条
[12]  
Hebey E., 1996, J. Geom. Anal, V6, P531, DOI [10.1007/BF02921622, DOI 10.1007/BF02921622]
[13]   Scalar curvature, Killing vector fields and harmonic one-forms on compact Riemannian manifolds [J].
Hu, ZJ ;
Li, HZ .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :587-598
[14]  
HUISKEN G, 1985, J DIFFER GEOM, V21, P47
[15]   Isolation of the Weyl conformal tensor for Einstein manifolds [J].
Itoh, M ;
Satoh, H .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2002, 78 (07) :140-142
[16]   LINEAR INDEPENDENCE OF RENORMALIZATION COUNTERTERMS IN CURVED SPACE-TIMES OF ARBITRARY DIMENSIONALITY [J].
JACK, I ;
PARKER, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (05) :1137-1139
[17]   Rigidity of noncompact complete manifolds with harmonic curvature [J].
Kim, Seongtag .
MANUSCRIPTA MATHEMATICA, 2011, 135 (1-2) :107-116
[18]   THE YAMABE PROBLEM [J].
LEE, JM ;
PARKER, TH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) :37-91
[19]  
Pigola S, 2007, T AM MATH SOC, V359, P1817
[20]   CONFORMALLY FLAT MANIFOLDS, KLEINIAN-GROUPS AND SCALAR CURVATURE [J].
SCHOEN, R ;
YAU, ST .
INVENTIONES MATHEMATICAE, 1988, 92 (01) :47-71