Proton exchange membrane water electrolysis at high current densities: Investigation of thermal limitations

被引:35
作者
Moeckl, Maximilian [1 ]
Bernt, Maximilian [1 ]
Schroeter, Jonas [1 ]
Jossen, Andreas [2 ]
机构
[1] ZAE Bayern, Electrochem Energy Storage, Walther Meigner Str 6, D-85748 Garching, Germany
[2] Tech Univ Munich, Dept Elect & Comp Engn, Chair Elect Energy Storage Technol, Karlstr 45, D-80333 Munich, Germany
关键词
Proton exchange membrane water electrolysis (PEMWE); High current density operation; Thermal limitation; Heat transport; POWER-TO-GAS; HIGH-PRESSURE; IN-SITU; TEMPERATURE SENSOR; PEM; OPERATION; MODEL; PERFORMANCE; HYDROGEN; HEAT;
D O I
10.1016/j.ijhydene.2019.11.144
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work the thermal limitations of high current density proton exchange membrane water electrolysis are investigated by the use of a one dimensional model. The model encompasses in-cell heat transport from the membrane electrode assembly to the flow field channels. It is validated by in-situ temperature measurements using thin bare wire thermocouples integrated into the membrane electrode assemblies based on Nafion 117 membranes in a 5 cm(2) cell setup. Heat conductivities of the porous transport layers, titanium sinter metal and carbon paper, between membrane electrode assembly and flow fields are measured in the relevant operating temperature range of 40 degrees C - 90 degrees C for application in the model. Additionally, high current density experiments up to 25 A/cm(2) are conducted with Nafion 117, Nafion (R) 212 and Nafion XL based membrane electrode assemblies. Experimental results are in agreement with the heat transport model. It is shown that for anode-only water circulation, water flows around 25 ml/(min cm(2)) are necessary for an effective heat removal in steady state operation at 10 A/cm(2), 80 degrees C water inlet temperature and 90 degrees C maximum membrane electrode assembly temperature. The measured cell voltage at this current density is 2,05 V which corresponds to a cell efficiency of 61 % based on lower heating value. Operation at these high current densities results in three to ten-fold higher power density compared to current state of the art proton exchange membrane water electrolysers. This would drastically lower the material usage and the capital expenditures for the electrolysis cell stack. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1417 / 1428
页数:12
相关论文
共 40 条
  • [1] Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell
    Abdin, Z.
    Webb, C. J.
    Gray, E. MacA
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (39) : 13243 - 13257
  • [2] Multiphysics simulation of a PEM electrolyser: Energetic Macroscopic Representation approach
    Agbli, K. S.
    Pera, M. C.
    Hissel, D.
    Rallieres, O.
    Turpin, C.
    Doumbia, I.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (02) : 1382 - 1398
  • [3] Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell
    Ali, Syed Talat
    Lebaek, Jesper
    Nielsen, Lars Pleth
    Mathiasen, Claus
    Moller, Per
    Kaer, Soren Knudsen
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (15) : 4835 - 4841
  • [4] Two-dimensional model of low-pressure PEM electrolyser: Two-phase flow regime, electrochemical modelling and experimental validation
    Aubras, F.
    Deseure, J.
    Kadjo, J. J. A.
    Dedigama, I.
    Majasan, J.
    Grondin-Perez, B.
    Chabriat, J. -P.
    Brett, D. J. L.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (42) : 26203 - 26216
  • [5] Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems
    Bareiss, Kay
    de la Rua, Cristina
    Moeckl, Maximilian
    Hamacher, Thomas
    [J]. APPLIED ENERGY, 2019, 237 : 862 - 872
  • [6] Bergman T.L., 2007, Fundamentals of Heat and Mass Transfer
  • [7] Influence of Ionomer Content in IrO2/TiO2 Electrodes on PEM Water Electrolyzer Performance
    Bernt, Maximilian
    Gasteiger, Hubert A.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) : F3179 - F3189
  • [8] Bessarabov D, 2018, PEM water electrolysis, V1, P117, DOI [10.1016/B978-0-12-811145-1.00006-X, DOI 10.1016/B978-0-12-811145-1.00006-X]
  • [9] Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling
    Bock, Robert
    Karoliussen, Havard
    Seland, Frode
    Pollet, Bruno G.
    Thomassen, Magnus Skinlo
    Holdcroft, Steven
    Burheim, Odne S.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (02) : 1236 - 1254
  • [10] Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review
    Buttler, Alexander
    Spliethoff, Hartmut
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 2440 - 2454