On two-weight estimates for the maximal operator in local Morrey spaces

被引:10
作者
Samko, Natasha [1 ]
机构
[1] Lulea Univ Technol, SE-97187 Lulea, Sweden
关键词
Generalized weighted Morrey space; maximal function; Sawyer condition; Muckenhoupt class; WEIGHTED HARDY;
D O I
10.1142/S0129167X14500992
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two weighted local Morrey spaces L-{x0}(p,phi)(Omega, u) and L-{x0}(p,phi)(Omega, v) we obtain general type sufficient conditions and necessary conditions imposed on the functions phi and psi and the weights u and v for the boundedness of the maximal operator from L-{x0}(p,phi)(Omega, u) to L-{x0}(p,phi)(Omega, v), with some "logarithmic gap" between the sufficient and necessary conditions. Both the conditions formally coincide if we omit a certain logarithmic factor in these conditions.
引用
收藏
页数:8
相关论文
共 17 条
[1]  
[Anonymous], 2001, FOURIER ANAL, DOI DOI 10.1090/GSM/029
[2]  
[Anonymous], 1985, J. Sov. Math, DOI DOI 10.1007/BF02105397
[3]  
[Anonymous], 1977, FUNCTION SPACES
[4]  
Chiarenza F., 1987, Rend. Mat., V7, P273
[5]   Morrey spaces and fractional integral operators [J].
Eridani, A. ;
Kokilashvili, Vakhtang ;
Meskhi, Alexander .
EXPOSITIONES MATHEMATICAE, 2009, 27 (03) :227-239
[6]  
Genebashvili I. I., 1997, PITMAN MONOGRAPHS SU, V92
[7]  
Giaquinta M., 1983, MULTIPLE INTEGRALS C
[8]   The Campanato, Morrey and Holder spaces on spaces of homogeneous type [J].
Nakai, Eiichi .
STUDIA MATHEMATICA, 2006, 176 (01) :1-19
[9]   QUASI-MONOTONE WEIGHT FUNCTIONS AND THEIR CHARACTERISTICS AND APPLICATIONS [J].
Persson, Lars-Erik ;
Samko, Natasha ;
Wall, Peter .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03) :685-705
[10]   Weighted Hardy and potential operators in the generalized Morrey spaces [J].
Persson, Lars-Erik ;
Samko, Natasha .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) :792-806