Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models

被引:13
作者
Shah, A. A. [1 ]
Xing, W. W. [1 ]
Triantafyllidis, V. [1 ]
机构
[1] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 473卷 / 2200期
基金
英国工程与自然科学研究理事会;
关键词
parameter-dependent partial differential equations; proper orthogonal decomposition; Gaussian process model; manifold learning; nonlinear systems; PROPER ORTHOGONAL DECOMPOSITION; INTERPOLATION METHOD; REDUCTION; OPTIMIZATION; POD; APPROXIMATION; STABILIZATION; STATE;
D O I
10.1098/rspa.2016.0809
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
引用
收藏
页数:21
相关论文
共 46 条
[1]   Interpolation method for adapting reduced-order models and application to aeroelasticity [J].
Amsallem, David ;
Farhat, Charbel .
AIAA JOURNAL, 2008, 46 (07) :1803-1813
[2]   Stabilization of projection-based reduced-order models [J].
Amsallem, David ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (04) :358-377
[3]   AN ONLINE METHOD FOR INTERPOLATING LINEAR PARAMETRIC REDUCED-ORDER MODELS [J].
Amsallem, David ;
Farhat, Charbel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) :2169-2198
[4]   A method for interpolating on manifolds structural dynamics reduced-order models [J].
Amsallem, David ;
Cortial, Julien ;
Carlberg, Kevin ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (09) :1241-1258
[5]  
[Anonymous], 2003, QUAL ENG
[6]  
[Anonymous], 2002, Principal components analysis
[7]  
[Anonymous], USSR COMPUT MATH MAT
[8]   Missing Point Estimation in Models Described by Proper Orthogonal Decomposition [J].
Astrid, Patricia ;
Weiland, Siep ;
Willcox, Karen ;
Backx, Ton .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (10) :2237-2251
[9]   Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems [J].
Bai, ZJ .
APPLIED NUMERICAL MATHEMATICS, 2002, 43 (1-2) :9-44
[10]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672