Extending Lipschitz functions via random metric partitions

被引:104
作者
Lee, JR [1 ]
Naor, A
机构
[1] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[2] Microsoft Corp, Res, Redmond, WA 98052 USA
关键词
D O I
10.1007/s00222-004-0400-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:59 / 95
页数:37
相关论文
共 27 条
  • [1] [Anonymous], 1984, CONTEMP MATH
  • [2] BALL K, 1992, GEOM FUNCT ANAL, V2, P137, DOI [10.1007/BF01896971, DOI 10.1007/BF01896971]
  • [3] Stability of the Lipschitz extension property under metric transforms
    Brudnyi, Y
    Shvartsman, P
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (01) : 73 - 79
  • [4] Buyalo S., 2001, ASIAN J MATH, V5, P685, DOI DOI 10.4310/AJM.2001.V5.N4.A5.MR1913816
  • [5] Random walk in random groups
    Gromov, M
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) : 73 - 146
  • [6] Gromov M., 1993, GEOMETRIC GROUP THEO, P1
  • [7] JOHN F, 1948, COURANT ANNIVERSARY, P187
  • [8] EXTENSIONS OF LIPSCHITZ-MAPS INTO BANACH-SPACES
    JOHNSON, WB
    LINDENSTRAUSS, J
    SCHECHTMAN, G
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1986, 54 (02) : 129 - 138
  • [9] KIRSZBRAUN M., 1934, FUND MATH, V22, P77
  • [10] KURATOWSKI K, 1965, B ACAD POL SCI SMAP, V13, P397