A duality principle in weighted Sobolev spaces on the real line

被引:9
|
作者
Eveson, Simon P. [1 ]
Stepanov, Vladimir D. [2 ,3 ]
Ushakova, Elena P. [4 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Peoples Friendship Univ Russia, Dept Math Anal & Funct Theory, Moscow 117198, Russia
[3] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
[4] Russian Acad Sci, Ctr Comp, Far Eastern Branch, Khabarovsk 680000, Russia
基金
俄罗斯科学基金会;
关键词
Embeddings; weighted Sobolev spaces; weighted Lebesgue spaces; duality; norm inequalities; Hardy-Steklov operator; 46E35; OPERATORS; INEQUALITIES; BOUNDEDNESS; KERNEL; SPECTRUM;
D O I
10.1002/mana.201400019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An embedding inequality of Sobolev type is characterized in the paper with help of a duality principle and boundedness criteria for the Hardy-Steklov integral operator in weighted Lebesgue spaces.
引用
收藏
页码:877 / 897
页数:21
相关论文
共 50 条
  • [41] Weighted Sobolev spaces of radially symmetric functions
    Musina, Roberta
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (06) : 1629 - 1659
  • [42] SOBOLEV'S THEOREM AND DUALITY FOR HERZ-MORREY SPACES OF VARIABLE EXPONENT
    Mizuta, Yoshihiro
    Ohno, Takao
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) : 389 - 416
  • [43] A note on the Ostrovsky equation in weighted Sobolev spaces
    Bustamante, Eddye
    Jimenez Urrea, Jose
    Mejia, Jorge
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (02) : 1004 - 1018
  • [44] The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces
    Liu, Suying
    Yang, Minghua
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (02) : 415 - 431
  • [45] Embeddings of weighted Sobolev spaces and degenerate Dirichlet problems involving the weighted p-Laplacian
    Gol'dshtein, V.
    Motreanu, V. V.
    Ukhlov, A.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (10-11) : 905 - 930
  • [46] Γ-convergence and stochastic homogenization of degenerate integral functionals in weighted Sobolev spaces
    D'Onofrio, Chiara
    Zeppieri, Caterina Ida
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (02) : 491 - 544
  • [47] Duality of matrix-weighted Besov spaces
    Roudenko, S
    STUDIA MATHEMATICA, 2004, 160 (02) : 129 - 156
  • [48] DUALITY OF WEIGHTED BERGMAN SPACES WITH SMALL EXPONENTS
    Perala, Antti
    Rattya, Jouni
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 621 - 626
  • [49] Duality in refined sobolev–malliavin spaces and weak approximation of spde
    Andersson A.
    Kruse R.
    Larsson S.
    Stochastics and Partial Differential Equations Analysis and Computations, 2016, 4 (1): : 113 - 149
  • [50] Duality for A∞ weights on the real line
    D'Onofrio, Luigi
    Popoli, Arturo
    Schiattarella, Roberta
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2016, 27 (03) : 287 - 308