A duality principle in weighted Sobolev spaces on the real line

被引:9
|
作者
Eveson, Simon P. [1 ]
Stepanov, Vladimir D. [2 ,3 ]
Ushakova, Elena P. [4 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Peoples Friendship Univ Russia, Dept Math Anal & Funct Theory, Moscow 117198, Russia
[3] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
[4] Russian Acad Sci, Ctr Comp, Far Eastern Branch, Khabarovsk 680000, Russia
基金
俄罗斯科学基金会;
关键词
Embeddings; weighted Sobolev spaces; weighted Lebesgue spaces; duality; norm inequalities; Hardy-Steklov operator; 46E35; OPERATORS; INEQUALITIES; BOUNDEDNESS; KERNEL; SPECTRUM;
D O I
10.1002/mana.201400019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An embedding inequality of Sobolev type is characterized in the paper with help of a duality principle and boundedness criteria for the Hardy-Steklov integral operator in weighted Lebesgue spaces.
引用
收藏
页码:877 / 897
页数:21
相关论文
共 50 条
  • [21] Certain imbeddings of weighted Sobolev spaces
    Jain, P
    Bansal, B
    Jain, PK
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (01): : 105 - 120
  • [22] SOME IDENTITIES ON WEIGHTED SOBOLEV SPACES
    Boulmezaoud, Tahar Z.
    Kourta, Amel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (03): : 427 - 434
  • [23] On weighted critical imbeddings of Sobolev spaces
    Edmunds, D. E.
    Hudzik, H.
    Krbec, M.
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) : 585 - 592
  • [24] Mappings associated with weighted Sobolev spaces
    Ukhlov, A.
    Vodopyanov, S. K.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS III, 2008, 455 : 369 - 382
  • [25] WEIGHTED SOBOLEV SPACES AND EMBEDDING THEOREMS
    Gol'dshtein, V.
    Ukhlov, A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) : 3829 - 3850
  • [26] Continuity and differentiability for weighted Sobolev spaces
    Mizuta, Y
    Shimomura, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (10) : 2985 - 2994
  • [27] Sawyer's duality principle for grand Lebesgue spaces
    Jain, Pankaj
    Singh, Arun Pal
    Singh, Monika
    Stepanov, Vladimir D.
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (04) : 841 - 849
  • [28] TRACE AND EXTENSION THEOREMS RELATING BESOV SPACES TO WEIGHTED AVERAGED SOBOLEV SPACES
    Barton, Ariel
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (03): : 817 - 870
  • [29] Bergman projections on weighted mixed norm spaces and duality
    Arsenovic, Milos
    Savkovic, Ivana
    ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (04)
  • [30] On a Class of Functionals on a Weighted First-Order Sobolev Space on the Real Line
    Prokhorov, D., V
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 312 (01) : 226 - 240