A duality principle in weighted Sobolev spaces on the real line

被引:9
|
作者
Eveson, Simon P. [1 ]
Stepanov, Vladimir D. [2 ,3 ]
Ushakova, Elena P. [4 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Peoples Friendship Univ Russia, Dept Math Anal & Funct Theory, Moscow 117198, Russia
[3] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
[4] Russian Acad Sci, Ctr Comp, Far Eastern Branch, Khabarovsk 680000, Russia
基金
俄罗斯科学基金会;
关键词
Embeddings; weighted Sobolev spaces; weighted Lebesgue spaces; duality; norm inequalities; Hardy-Steklov operator; 46E35; OPERATORS; INEQUALITIES; BOUNDEDNESS; KERNEL; SPECTRUM;
D O I
10.1002/mana.201400019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An embedding inequality of Sobolev type is characterized in the paper with help of a duality principle and boundedness criteria for the Hardy-Steklov integral operator in weighted Lebesgue spaces.
引用
收藏
页码:877 / 897
页数:21
相关论文
共 50 条
  • [1] On associate spaces of weighted Sobolev space on the real line
    Prokhorov, Dmitrii V.
    Stepanov, Vladimir D.
    Ushakova, Elena P.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (5-6) : 890 - 912
  • [2] On weighted Sobolev spaces on the real line
    Prokhorov, D. V.
    Stepanov, V. D.
    Ushakova, E. P.
    DOKLADY MATHEMATICS, 2016, 93 (01) : 78 - 81
  • [3] Spaces Associated with Weighted Sobolev Spaces on the Real Line
    Prokhorov, D. V.
    Stepanov, V. D.
    Ushakova, E. P.
    DOKLADY MATHEMATICS, 2018, 98 (01) : 373 - 376
  • [4] Characterization of the function spaces associated with weighted Sobolev spaces of the first order on the real line
    Prokhorov, D., V
    Stepanov, V. D.
    Ushakova, E. P.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (06) : 1075 - 1115
  • [5] Hardy-Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis
    Stepanov, V. D.
    Ushakova, E. P.
    MATHEMATICAL NOTES, 2019, 105 (1-2) : 91 - 103
  • [6] Hardy-Steklov Operators and Duality Principle in Weighted Sobolev Spaces of the First Order
    Stepanov, V. D.
    Ushakova, E. P.
    DOKLADY MATHEMATICS, 2018, 97 (03) : 232 - 235
  • [7] Weighted Sobolev spaces: Markov-type inequalities and duality
    Marcellan, Francisco
    Quintana, Yamilet
    Rodriguez, Jose M.
    BULLETIN OF MATHEMATICAL SCIENCES, 2018, 8 (02) : 233 - 256
  • [8] POINCARE INEQUALITIES IN WEIGHTED SOBOLEV SPACES
    王万义
    孙炯
    郑志明
    Applied Mathematics and Mechanics(English Edition), 2006, (01) : 125 - 132
  • [9] Weighted Variable Sobolev Spaces and Capacity
    Aydin, Ismail
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [10] Poincaré inequalities in weighted Sobolev spaces
    Wan-yi Wang
    Jiong Sun
    Zhi-ming Zheng
    Applied Mathematics and Mechanics, 2006, 27 : 125 - 132