MAXIMAL REGULARITY FOR INTEGRAL EQUATIONS IN BANACH SPACES

被引:6
作者
Bu, Shangquan [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2011年 / 15卷 / 01期
关键词
Fourier multiplier; Maximal regularity; Integral equation; Besov spaces; VALUED FOURIER MULTIPLIERS; L-P-REGULARITY; INTEGRODIFFERENTIAL EQUATIONS; DELAY EQUATIONS; BESOV-SPACES;
D O I
10.11650/twjm/1500406172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study maximal regularity in periodic Besov spaces B(p,q)(s)(T, X) for the integral equations (P): u(t) = A integral(t)(-infinity) a(t - s)u(s)ds) + B integral(t)(-infinity) b(t - s)u(s)u(s)ds + f(t) on [0, 2 pi] with periodic boundary condition u(0) = u(2 pi), where A and B are closed operators in a Banach space X, a, b is an element of L(1)(R(+)) and f is a given function defined on [0, 2 pi] with values in X. Under suitable assumptions on the kernels a, b and the closed operators A, B, we completely characterize B(p,q)(s)-maximal regularity of (P).
引用
收藏
页码:229 / 240
页数:12
相关论文
共 14 条
[1]  
Amann H, 1997, MATH NACHR, V186, P5
[2]   Operator-valued Fourier multipliers on periodic Besov spaces and applications [J].
Arendt, W ;
Bu, SQ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 :15-33
[3]   The operator-valued Marcinkiewicz multiplier theorem and maximal regularity [J].
Arendt, W ;
Bu, SQ .
MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (02) :311-343
[4]  
Bu S., 2004, ACTA MATH SIN, V17, P15
[5]   Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces [J].
Keyantuo, V ;
Lizama, C .
STUDIA MATHEMATICA, 2005, 168 (01) :25-50
[6]   Fourier multipliers and integro-differential equations in Banach spaces [J].
Keyantuo, V ;
Lizama, C .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 :737-750
[7]  
KEYANTUO V, PERIODIC SOLUT UNPUB
[8]   Maximal regularity for perturbed integral equations on periodic Lebesgue spaces [J].
Lizama, Carlos ;
Poblete, Veronica .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (02) :775-786
[10]   Maximal regularity of delay equations in Banach spaces [J].
Lizama, Carlos ;
Poblete, Veronica .
STUDIA MATHEMATICA, 2006, 175 (01) :91-102