Flexibility of Lyapunov exponents

被引:5
作者
Bochi, J. [1 ,2 ]
Katok, A.
Hertz, F. Rodriguez [2 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Ave Vicuna Mackenna 4860, Santiago, Chile
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
flexibility; Lyapunov exponents; dominated splittings; Anosov diffeomorphisms; PARTIALLY HYPERBOLIC DIFFEOMORPHISMS; METRIC ENTROPY; FOLIATIONS; RIGIDITY; INFIMUM;
D O I
10.1017/etds.2021.78
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We outline the flexibility program in smooth dynamics, focusing on flexibility of Lyapunov exponents for volume-preserving diffeomorphisms. We prove flexibility results for Anosov diffeomorphisms admitting dominated splittings into one-dimensional bundles.
引用
收藏
页码:554 / 591
页数:38
相关论文
共 44 条
[1]  
[Anonymous], 1997, Encyclopedia of Mathematics and its Applications
[2]  
[Anonymous], 1982, Ergodic Theory and Dynamical Systems
[3]  
Anosov D.V., 1974, IZV AKAD NAUK SSSR M, V38, P518
[4]  
Arnold L., 1998, RANDOM DYNAMICAL SYS, DOI [10.1007/978-3-662-12878-7, DOI 10.1007/978-3-662-12878-7]
[5]   On the regularization of conservative maps [J].
Avila, Artur .
ACTA MATHEMATICA, 2010, 205 (01) :5-18
[6]   Removing zero Lyapunov exponents [J].
Baraviera, AT ;
Bonatti, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :1655-1670
[7]  
Barreira L, 2007, ENCYCLOP MATH APPL, P1
[8]  
Barthelme T., ANN I FOURIER, DOI [10.5802/aif.3410, DOI 10.5802/AIF.3410]
[9]   Flexibility of Geometric and Dynamical Data in Fixed Conformal Classes [J].
Barthelme, Thomas ;
Erchenko, Alena .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (02) :517-544
[10]   The Lyapunov exponents of generic volume-preserving and symplectic maps [J].
Bochi, J ;
Viana, M .
ANNALS OF MATHEMATICS, 2005, 161 (03) :1423-1485