Dose painting by means of Monte Carlo treatment planning at the voxel level

被引:8
作者
Jimenez-Ortega, E. [1 ,2 ]
Ureba, A. [2 ,3 ]
Vargas, A. [1 ]
Baeza, J. A. [4 ]
Wals-Zurita, A. [5 ]
Garcia-Gomez, J. [6 ]
Barbeiro, A. R. [1 ,2 ]
Leal, A. [1 ,2 ]
机构
[1] Univ Seville, Dept Fisiol Med & Biofis, Seville, Spain
[2] IBIS, Inst Biomed Sevilla, Seville, Spain
[3] Stockholm Univ, Karolinska Inst, Med Radiat Phys, Stockholm, Sweden
[4] Maastricht Univ, Med Ctr, Dept Radiat Oncol, Maastricht, Netherlands
[5] Hosp Univ Virgen Macarena, Serv Radioterapia, Seville, Spain
[6] Hosp Univ Virgen Macarena, Serv Med Nucl, Seville, Spain
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2017年 / 42卷
关键词
Dose painting by numbers; Dose painting by contour; Linear programming optimization; Monte Carlo dose calculation; GEOMETRIC UNCERTAINTIES; NUMBERS; OPTIMIZATION; ROBUST; RADIOTHERAPY; FEASIBILITY; SENSITIVITY; CANCER; SYSTEM; TUMORS;
D O I
10.1016/j.ejmp.2017.04.005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop a new optimization algorithm to carry out true dose painting by numbers (DPBN) planning based on full Monte Carlo (MC) calculation. Methods: Four configurations with different clustering of the voxel values from PET data were proposed. An optimization method at the voxel level under Lineal Programming (LP) formulation was used for an inverse planning and implemented in CARMEN, an in-house Monte Carlo treatment planning system. Results: Beamlet solutions fulfilled the objectives and did not show significant differences between the different configurations. More differences were observed between the segment solutions. The plan for the dose prescription map without clustering was the better solution. Conclusions: LP optimization at voxel level without dose-volume restrictions can carry out true DPBN planning with the MC accuracy. (C) 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:339 / 344
页数:6
相关论文
共 25 条
  • [1] [Anonymous], 2003, PHYS MED BIOL
  • [2] Dose painting by numbers in a standard treatment planning system using inverted dose prescription maps
    Arnesen, Marius Rothe
    Knudtsen, Ingerid Skjei
    Rekstad, Bernt Louni
    Eilertsen, Karsten
    Dale, Einar
    Bruheim, Kjersti
    Helland, Aslaug
    Londalen, Ayca Muftuler
    Hellebust, Taran Paulsen
    Malinen, Eirik
    [J]. ACTA ONCOLOGICA, 2015, 54 (09) : 1607 - 1613
  • [3] CARMEN: A MatLab-Based Research Platform for Monte Carlo Treatment Planning (MCTP) and Customized System for Planning Evaluation
    Baeza, J. A.
    Ureba, A.
    Jimenez-Ortega, E.
    Barbeiro, A. R.
    Lagares, J. I.
    Leal Plaza, A.
    [J]. MEDICAL PHYSICS, 2015, 42 (06) : 3367 - 3368
  • [4] Theragnostic imaging for radiation oncology: dose-painting by numbers
    Bentzen, SM
    [J]. LANCET ONCOLOGY, 2005, 6 (02) : 112 - 117
  • [5] On the sensitivity of IMRT dose optimization to the mathematical form of a biological imaging-based prescription function
    Bowen, Stephen R.
    Flynn, Ryan T.
    Bentzen, Soren M.
    Jeraj, Robert
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (06) : 1483 - 1501
  • [6] A robust approach to IMRT optimization
    Chan, TCY
    Bortfeld, T
    Tsitsiklis, JN
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (10) : 2567 - 2583
  • [7] Feasibility and sensitivity study of helical tomotherapy for dose painting plans
    Deveau, Michael A.
    Bowen, Stephen R.
    Westerly, David C.
    Jeraj, Robert
    [J]. ACTA ONCOLOGICA, 2010, 49 (07) : 991 - 996
  • [8] Methodology for adaptive and robust FDG-PET escalated dose painting by numbers in head and neck tumors
    Differding, Sarah
    Sterpin, Edmond
    Janssens, Guillaume
    Hanin, Francois-Xavier
    Lee, John Aldo
    Gregoire, Vincent
    [J]. ACTA ONCOLOGICA, 2016, 55 (02) : 217 - 225
  • [9] Segmentation of PET Images for Computer-Aided Functional Quantification of Tuberculosis in Small Animal Models
    Foster, Brent
    Bagci, Ulas
    Xu, Ziyue
    Dey, Bappaditya
    Luna, Brian
    Bishai, William
    Jain, Sanjay
    Mollura, Daniel J.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (03) : 711 - 724
  • [10] Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors
    Javier Salguero, Francisco
    Arrans, Rafael
    Atriana Palma, Bianey
    Leal, Antonio
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (05) : 1413 - 1427