An Integrated Design and Fabrication Strategy for Planar Soft Dielectric Elastomer Actuators

被引:13
作者
Chen, Feifei [1 ]
Liu, Kun [1 ]
Pan, Qi [1 ]
Chen, Shitong [1 ]
Zhu, Xiangyang [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Robot Inst, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Strain; Stress; Electrodes; Tensors; Optimization; Two dimensional displays; Mechatronics; Dielectric elastomer actuators; integrated design; locomotion in confined space; soft robots; 3-D printing;
D O I
10.1109/TMECH.2020.3043883
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dielectric elastomers (DEs) are promising soft actuators for use in soft material robots, due to their considerable voltage-induced strain. The actuator's behavior is highly nonlinear due to the complex interplay between the DE, the support structure, and the input electric field, making it a big challenge to automatically design dielectric elastomer actuators (DEAs). Here, in this article, we present an integrated design strategy for planar DEAs, aiming to realize their full potential. To endow the actuator module with the maximal actuation strain, we carry out dimensionless analysis to identify the key design variables, develop a fast finite element analysis model, and thoroughly investigate how the geometric structuring and the material prestretch tailor the voltage-induced deformation. We also provide a fabrication strategy by patterning the compliant electrodes on the DE membrane and then directly printing the support structure made of thermoplastic polyurethane. The experiments show that the optimized actuator obtains a remarkable nominal strain up to 38.6%. We also characterize the dynamic performance of the optimized actuator, evaluate its energy density and power density, and develop a soft locomotion robot that can crawl through a confined tunnel, at a fast moving speed up to 0.17 body length/s.
引用
收藏
页码:2629 / 2640
页数:12
相关论文
共 37 条
[1]   Untethered soft robot capable of stable locomotion using soft electrostatic actuators [J].
Cao, Jiawei ;
Qin, Lei ;
Liu, Jun ;
Ren, Qinyuan ;
Foo, Choon Chiang ;
Wang, Hongqiang ;
Lee, Heow Pueh ;
Zhu, Jian .
EXTREME MECHANICS LETTERS, 2018, 21 :9-16
[2]   Design Optimization of Soft Robots: A Review of the State of the Art [J].
Chen, Feifei ;
Wang, Michael Yu .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2020, 27 (04) :27-43
[3]   Automatic Design of Soft Dielectric Elastomer Actuators With Optimal Spatial Electric Fields [J].
Chen, Feifei ;
Liu, Kun ;
Wang, Yiqiang ;
Zou, Jiang ;
Gu, Guoying ;
Zhu, Xiangyang .
IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (05) :1150-1165
[4]   Programmable Deformations of Networked Inflated Dielectric Elastomer Actuators [J].
Chen, Feifei ;
Cao, Jiawei ;
Zhang, Hongying ;
Wang, Michael Yu ;
Zhu, Jian ;
Zhang, Y. F. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2019, 24 (01) :45-55
[5]   Dynamic electromechanical instability of a dielectric elastomer balloon [J].
Chen, Feifei ;
Zhu, Jian ;
Wang, Michael Yu .
EPL, 2015, 112 (04)
[6]   Controlled flight of a microrobot powered by soft artificial muscles [J].
Chen, Yufeng ;
Zhao, Huichan ;
Mao, Jie ;
Chirarattananon, Pakpong ;
Helbling, E. Farrell ;
Hyun, Nak-Seung Patrick ;
Clarke, David R. ;
Wood, Robert J. .
NATURE, 2019, 575 (7782) :324-+
[7]   3D Printing of Interdigitated Dielectric Elastomer Actuators [J].
Chortos, Alex ;
Hajiesmaili, Ehsan ;
Morales, Javier ;
Clarke, David R. ;
Lewis, Jennifer A. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (01)
[8]   A survey on dielectric elastomer actuators for soft robots [J].
Gu, Guo-Ying ;
Zhu, Jian ;
Zhu, Li-Min ;
Zhu, Xiangyang .
BIOINSPIRATION & BIOMIMETICS, 2017, 12 (01)
[9]   Soft wall-climbing robots [J].
Gu, Guoying ;
Zou, Jiang ;
Zhao, Ruike ;
Zhao, Xuanhe ;
Zhu, Xiangyang .
SCIENCE ROBOTICS, 2018, 3 (25)
[10]   3D printing for soft robotics - a review [J].
Gul, Jahan Zeb ;
Sajid, Memoon ;
Rehman, Muhammad Muqeet ;
Siddiqui, Ghayas Uddin ;
Shah, Imran ;
Kim, Kyung-Hwan ;
Lee, Jae-Wook ;
Choi, Kyung Hyun .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2018, 19 (01) :243-262