Dynamic Changes in Material Properties and Degradation of Poly(ethylene glycol)-Hydrazone Gels as a Function of pH

被引:29
|
作者
Escobar, Francisco [1 ]
Anseth, Kristi S. [2 ,3 ]
Schultz, Kelly M. [1 ]
机构
[1] Lehigh Univ, Dept Chem & Biomol Engn, Bethlehem, PA 18015 USA
[2] Univ Colorado Boulder, Dept Chem & Biol Engn, Biofrontiers Inst, Boulder, CO 80303 USA
[3] Univ Colorado Boulder, Howard Hughes Med Inst, Boulder, CO 80303 USA
基金
美国国家科学基金会;
关键词
PARTICLE TRACKING MICRORHEOLOGY; CROSS-LINKING POLYMER; COVALENT ADAPTABLE NETWORKS; HYALURONIC-ACID HYDROGELS; SELF-HEALING HYDROGELS; COMPLEX FLUIDS; LINEAR VISCOELASTICITY; PEG HYDROGELS; TRANSITION; CHEMISTRY;
D O I
10.1021/acs.macromol.7b01246
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Covalent adaptable hydrogels (CAHs) dynamically evolve when pushed out of equilibrium by force or change in environmental conditions. Adapting these materials for advanced biological applications, including 3D cell culture and drug delivery platforms, requires in-depth knowledge of the evolution of scaffold microstructure and rheological properties. We use multiple particle tracking microrheology to measure the changes in a poly(ethylene glycol)-hydrazone CAH structure and properties when pushed out of equilibrium by a single change in pH. We determine the CAH degrades rapidly at acidic pH with multiple cycles of almost complete degradation and gelation. At pH 7.1, the scaffold degrades and re-forms cross-links over approximately 1.5 weeks with small oscillations between degradation and gelation. These degradation cycles are well described with first- and second-order reaction kinetics. MPT is sensitive enough to measure the phase transitions in these materials giving new insight into how CAHs evolve and their potential uses in biological applications.
引用
收藏
页码:7351 / 7360
页数:10
相关论文
共 50 条
  • [1] Rheological properties of poly(ethylene glycol) solutions and gels
    A. V. Brikov
    A. N. Markin
    S. V. Sukhoverkhov
    V. A. Avramenko
    Doklady Physical Chemistry, 2016, 469 : 121 - 123
  • [2] Mechanical properties of layered poly (ethylene glycol) gels
    Skornia, S. L.
    Bledsoe, J. G.
    Kelso, B.
    Kuntzwillits, R.
    JOURNAL OF APPLIED BIOMATERIALS & BIOMECHANICS, 2007, 5 (03) : 176 - 183
  • [3] Rheological properties of poly(ethylene glycol) solutions and gels
    Brikov, A. V.
    Markin, A. N.
    Sukhoverkhov, S. V.
    Avramenko, V. A.
    DOKLADY PHYSICAL CHEMISTRY, 2016, 469 : 121 - 123
  • [4] Poly(ethylene glycol-β-cyclodextrin) gels:: Synthesis and properties
    Cesteros, Luis C.
    Ramirez, Camilo A.
    Pecina, Ainhoa
    Katime, Issa
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 102 (02) : 1162 - 1166
  • [6] Gelation of poly(vinyl alcohol) ethylene glycol solutions and properties of gels
    Yamaura, K
    Kitahara, H
    Tanigami, T
    JOURNAL OF APPLIED POLYMER SCIENCE, 1997, 64 (07) : 1283 - 1289
  • [9] Amphiphilic poly(ethylene glycol) gels and their swelling features
    Yati, Ilker
    Karadag, Koksal
    Sonmez, Hayal Bulbul
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2015, 26 (06) : 635 - 644
  • [10] Impact of Enzymatic Degradation on the Material Properties of Poly(Ethylene Terephthalate)
    Menzel, Teresa
    Weigert, Sebastian
    Gagsteiger, Andreas
    Eich, Yannik
    Sittl, Sebastian
    Papastavrou, Georg
    Ruckdaeschel, Holger
    Altstaedt, Volker
    Hoecker, Birte
    POLYMERS, 2021, 13 (22)