In situ apatite U-Pb dating for the ophiolite-hosted Nianzha orogenic gold deposit, Southern Tibet

被引:15
作者
Chen, Hongjun [1 ,2 ]
Sun, Xiaoming [1 ,2 ,3 ]
Li, Dengfeng [1 ,2 ]
Yin, Rong [2 ,3 ]
Tong, Zida [1 ,2 ]
Wu, Zhongwei [1 ,2 ]
Fu, Yu [1 ,2 ]
Liu, Qiaofen [1 ,2 ]
Chen, Xian [1 ,2 ]
Yi, Jianzhou [4 ]
Deng, Xueguo [5 ]
机构
[1] Sun Yat sen Univ, Sch Marine Sci, Zhuhai 519082, Peoples R China
[2] Guangdong Prov Key Lab Marine Resources & Coastal, Zhuhai 519082, Peoples R China
[3] Sun Yat Sen Univ, Sch Earth Sci & Engn, Zhuhai 519082, Peoples R China
[4] Dept Nat Resources Tibet Autonomous Reg, Lhasa 851400, Peoples R China
[5] Inst Met Geol & Explorat, Chengdu 610000, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Apatite; U-Pb dating; Trace element geochemistry; Orogenic gold deposit; Southern Tibet; DETRITAL ZIRCON GEOCHRONOLOGY; TRACE-ELEMENT COMPOSITIONS; UPPER TRIASSIC FLYSCH; TSANGPO SUTURE ZONE; FORE-ARC BASIN; FLUID INFILTRATION; LANGJIEXUE GROUP; AG DEPOSIT; PROVENANCE; TEMPERATURE;
D O I
10.1016/j.oregeorev.2022.104811
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Mineralization age dating is essential for understanding orogenic-type gold metallogeny, but suitable minerals for dating are not always available. Apatite can incorporate considerable amount of U and Th, making it a potential U-Pb geochronometer to study hydrothermal alteration and mineralization processes. The newlydiscovered Nianzha is a large orogenic Au deposit (~25 t @ 3.08 g/t Au) and located in the contact fault zone between ultramafic rocks and diorite in the Renbu tectonic me ' lange of southern Tibet. Two different types of apatite were identified in the Nianzha gold deposit: type I magmatic apatite hosted in diorite and syenite, and intergrown with other magmatic minerals; type II hydrothermal apatite hosted in mineralized diorite. These apatite grains are coarse euhedral granular and closely associated with auriferous sulfides (e.g., pyrite, chalcopyrite, galena). Type I apatite is F- and SO3-rich, whereas type II apatite is distinct from type I apatite by its significantly higher Cl, Mn, rare earth elements (REE), U, Th, and As contents, indicative of a hydrothermal origin. Thus, formation age of type II apatite reflects the timing of gold mineralization. Two type I magmatic apatite samples yielded similar discordia U-Pb ages of 80.35 +/- 1.56 Ma (MSWD = 1.3; n = 86) and 79.53 +/- 1.27 Ma (MSWD = 0.91; n = 72), respectively, whilst type II hydrothermal apatite yielded a discordia age of 44.60 +/- 1.45 Ma (MSWD = 1.2; n = 64). The gold mineralization age is consistent with that of nearby orogenic gold deposits (e.g., Mayum, Bangbu, Zhemulang, and Juqu) in the region. Therefore, we suggest that hydrothermal apatite U-Pb dating can effectively constrain the timing of orogenic Au mineralization events.
引用
收藏
页数:22
相关论文
共 98 条
[11]   U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb [J].
Chew, D. M. ;
Petrus, J. A. ;
Kamber, B. S. .
CHEMICAL GEOLOGY, 2014, 363 :185-199
[12]   Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface [J].
Chew, David M. ;
Spikings, Richard A. .
ELEMENTS, 2015, 11 (03) :189-194
[13]   U-Pb and Th-Pb dating of apatite by LA-ICPMS [J].
Chew, David M. ;
Sylvester, Paul J. ;
Tubrett, Mike N. .
CHEMICAL GEOLOGY, 2011, 280 (1-2) :200-216
[14]   High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite [J].
Cochrane, Ryan ;
Spikings, Richard A. ;
Chew, David ;
Wotzlaw, Joern-Frederik ;
Chiaradia, Massimo ;
Tyrrell, Shane ;
Schaltegger, Urs ;
Van der Lelij, Roelant .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2014, 127 :39-56
[15]   Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet [J].
Ding, L ;
Kapp, P ;
Wan, XQ .
TECTONICS, 2005, 24 (03) :1-18
[16]   Timing of Displacement along the Yardoi Detachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology [J].
Dong, Hanwen ;
Meng, Yuanku ;
Xu, Zhiqin ;
Cao, Hui ;
Yi, Zhiyu ;
Ma, Zeliang .
JOURNAL OF EARTH SCIENCE, 2019, 30 (03) :535-548
[17]   Provenance of the Langjiexue Group to the south of the Yarlung-Tsangpo Suture Zone in southeastern Tibet: Insights on the evolution of the Neo-Tethys Ocean in the Late Triassic [J].
Fang, Da-Ren ;
Wang, Gen-Hou ;
Hisada, Ken-ichiro ;
Yuan, Guo-Li ;
Han, Fang-Lin ;
Li, Dian ;
Tang, Yu ;
Pei, Qiu-Ming ;
Zhang, Liang-Liang .
INTERNATIONAL GEOLOGY REVIEW, 2019, 61 (03) :341-360
[18]   Thermochronological and geochemical footprints of post-orogenic fluid alteration recorded in apatite: Implications for mineralisation in the Uzbek Tian Shan [J].
Glorie, S. ;
Jepson, G. ;
Konopelko, D. ;
Mirkamalov, R. ;
Meeuws, F. ;
Gilbert, S. ;
Gillespie, J. ;
Collins, A. S. ;
Xiao, W. ;
Dewaele, S. ;
De Grave, J. .
GONDWANA RESEARCH, 2019, 71 :1-15
[19]   Orogenic gold: Common or evolving fluid and metal sources through time [J].
Goldfarb, Richard J. ;
Groves, David I. .
LITHOS, 2015, 233 :2-26
[20]   Orogenic gold and geologic time: a global synthesis [J].
Goldfarb, RJ ;
Groves, DI ;
Gardoll, S .
ORE GEOLOGY REVIEWS, 2001, 18 (1-2) :1-75