MoO3@ZnO Nanocomposite as an Efficient Anode Material for Supercapacitors: A Cost Effective Synthesis Approach

被引:32
作者
Muduli, Sadananda [1 ]
Pati, Subir K. [1 ]
Swain, Smrutirekha [2 ]
Martha, Surendra K. [1 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Chem, Sangareddy 502285, Telangana, India
[2] CSIR Inst Minerals & Mat Technol, Bhubaneswar 751013, Orissa, India
关键词
ASYMMETRIC SUPERCAPACITOR; OXIDE; ELECTRODE; STORAGE; HYBRID; COMPOSITES; NANOTUBES; GRAPHENE; DENSITY; H-MOO3;
D O I
10.1021/acs.energyfuels.1c01665
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The high pseudocapacitance of metal oxides makes them a very promising electrode material for supercapacitors. In this work, we report a MoO3-ZnO composite as an efficient electrode material for supercapacitors. The MoO3-ZnO composite materials were synthesized by the facile solid-state impregnation-calcination method at 350 degrees C. The MoO3-ZnO composite shows a specific capacitance of 280 F g(-1) at 1 A g(-1) current density in the potential range between 0 and -1.3 V in 1 M Na2SO4. The composite material shows a power density of 650 W kg(-1) at an energy density of 65 Wh kg(-1) and is stable over 10 000 cycles at 5 A g(-1) with 98% capacitance retention. The improved capacitive behavior of the MoO3-ZnO composite electrode is due to the redox behavior of MoO3, and the porous nature of ZnO, which facilitates the electrolyte ions interaction into the composite frameworks. The improved anodic potential charge storage nature and overall electrochemical performance depict that the MoO3-ZnO composite is a suitable electrode material for supercapacitors.
引用
收藏
页码:16850 / 16859
页数:10
相关论文
共 50 条
[41]   Enhanced photoelectrochemical properties and water splitting activity of self-ordered MoO3-TiO2 nanotubes [J].
Yang, Min ;
Zhang, Lei ;
Jin, Bowen ;
Huang, Li ;
Gan, Yang .
APPLIED SURFACE SCIENCE, 2016, 364 :410-415
[42]   Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors [J].
Yu, Feng ;
Liu, Zaichun ;
Zhou, Renwu ;
Tan, Deming ;
Wang, Hongxia ;
Wang, Faxing .
MATERIALS HORIZONS, 2018, 5 (03) :529-535
[43]   Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions [J].
Yu, Zenan ;
Tetard, Laurene ;
Zhai, Lei ;
Thomas, Jayan .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) :702-730
[44]   Mn-Doped NiMoO4 Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor [J].
Yuan, Jingjing ;
Yao, Dachuan ;
Jiang, Ling ;
Tao, Yingrui ;
Che, Jianfei ;
He, Guangyu ;
Chen, Haiqun .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (02) :1794-1803
[45]   A novel porous Mo3N2/MoO3 hybrid nanobelt as supercapacitor electrode material [J].
Yuan, Yao ;
Li, Xing-Ru ;
Zhang, Xuyang ;
Wang, Jiacheng ;
Zhou, Yao ;
Lin, Cheng-Te ;
Lin, Tsung-Wu ;
Yang, Minghui .
NANO FUTURES, 2018, 2 (04)
[46]   Microwave-assisted hydrothermal synthesis and electrochemical studies of - and h-MoO3 [J].
Zakharova, Galina S. ;
Schmidt, Christina ;
Ottmann, Alexander ;
Mijowska, Ewa ;
Klingeler, Ruediger .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (12) :3651-3661
[47]   Supercapacitors Performance Evaluation [J].
Zhang, Sanliang ;
Pan, Ning .
ADVANCED ENERGY MATERIALS, 2015, 5 (06)
[48]   Investigation of a Branchlike MoO3/Polypyrrole Hybrid with Enhanced Electrochemical Performance Used as an Electrode in Supercapacitors [J].
Zhang, Xia ;
Zeng, Xianzhong ;
Yang, Min ;
Qi, Yanxing .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (02) :1125-1130
[49]   Aerobic Recovered Carbon Fiber Support-Based MoO2//MnO2 Asymmetric Supercapacitor with a Widened Voltage Window [J].
Zhao, Chongjun ;
Hu, Yaqi ;
Zhou, Yanan ;
Li, Nan ;
Ding, Yiwen ;
Guo, Jingjia ;
Zhao, Chunhua ;
Yang, Yongrong .
ENERGY & FUELS, 2021, 35 (08) :6909-6920
[50]   Sandwich-Structured Transition Metal Oxide/Graphene/Carbon Nanotube Composite Yarn Electrodes for Flexible Two-Ply Yarn Supercapacitors [J].
Zhou, Qiang ;
Chen, Xiuhang ;
Su, Fenghua ;
Lyu, Xiaoming ;
Miao, Menghe .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (13) :5752-5759