Clustering of mixed data is important yet challenging due to a shortage of conventional distributions for such data. In this article, we propose a mixture model of Gaussian copulas for clustering mixed data. Indeed copulas, and Gaussian copulas in particular, are powerful tools for easily modeling the distribution of multivariate variables. This model clusters data sets with continuous, integer, and ordinal variables (all having a cumulative distribution function) by considering the intra-component dependencies in a similar way to the Gaussian mixture. Indeed, each component of the Gaussian copula mixture produces a correlation coefficient for each pair of variables and its univariate margins follow standard distributions (Gaussian, Poisson, and ordered multinomial) depending on the nature of the variable (continuous, integer, or ordinal). As an interesting by-product, this model generalizes many well-known approaches and provides tools for visualization based on its parameters. The Bayesian inference is achieved with a Metropolis-within-Gibbs sampler. The numerical experiments, on simulated and real data, illustrate the benefits of the proposed model: flexible and meaningful parameterization combined with visualization features.