Ascents of size less than d in compositions

被引:1
作者
Falah, Maisoon [1 ]
Mansour, Toufik [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31999 Haifa, Israel
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2011年 / 9卷 / 01期
关键词
Compositions; Distributions; Generating functions; Ascents; Descents; Levels;
D O I
10.2478/s11533-010-0078-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A composition of a positive integer n is a finite sequence pi(1)pi(2) ... pi(m) of positive integers such that pi(1) + ... + pi(m) = n. Let d be a fixed number. We say that we have an ascent of size d or more (respectively, less than d) if pi(i+1) >= pi(i) + d (respectively, pi(i) < pi(i+1) < pi(i) + d). Recently, Brennan and Knopfmacher determined the mean, variance and limiting distribution of the number of ascents of size d or more in the set of compositions of n. In this paper, we find an explicit formula for the multi-variable generating function for the number of compositions of n according to the number of parts, ascents of size d or more, ascents of size less than d, descents and levels. Also, we extend the results of Brennan and Knopfmacher to the case of ascents of size less than d. More precisely, we determine the mean, variance and limiting distribution of the number of ascents of size less than d in the set of compositions of n.
引用
收藏
页码:196 / 203
页数:8
相关论文
共 8 条
  • [1] [Anonymous], INTEGERS
  • [2] Brennan C, 2009, DISCRETE MATH THEOR, V11, P1
  • [3] CARLITZ L, 1976, FIBONACCI QUART, V14, P254
  • [4] LEVEL NUMBER SEQUENCES FOR TREES
    FLAJOLET, P
    PRODINGER, H
    [J]. DISCRETE MATHEMATICS, 1987, 65 (02) : 149 - 156
  • [5] Flajolet P., 2009, ANAL COMBINATORICS
  • [6] Goulden I., 1983, COMBINATORIAL ENUMER
  • [7] Heubach S., 2009, DISCRETE MATH APPL
  • [8] On Carlitz compositions
    Knopfmacher, A
    Prodinger, H
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (05) : 579 - 589