GROBNER-SHIRSHOV BASES FOR ROTA-BAXTER ALGEBRAS

被引:30
作者
Bokut, L. A. [1 ,2 ]
Chen, Yu. [1 ]
Deng, X. [1 ]
机构
[1] S China Normal Univ, Guangzhou, Guangdong, Peoples R China
[2] Sobolev Inst Math, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
Rota-Baxter algebra; Grobner-Shirshov basis; COMPOSITION-DIAMOND LEMMA; FIELD; RENORMALIZATION; SINGULARITIES; RESOLUTION; VARIETY;
D O I
10.1007/s11202-010-0097-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the composition-diamond lemma for associative nonunitary Rota-Baxter algebras of weight lambda. To give an application, we construct a linear basis for a free commutative and nonunitary Rota-Baxter algebra, show that every countably generated Rota-Baxter algebra of weight 0 can be embedded into a two-generated Rota-Baxter algebra, and prove the 1/2-PBW theorems for dendriform dialgebras and trialgebras.
引用
收藏
页码:978 / 988
页数:11
相关论文
共 37 条
[1]  
[Anonymous], 1970, Aequat. Math., DOI DOI 10.1007/BF01844169
[2]  
[Anonymous], 1998, London Math. Soc. Lecture Note Ser.
[3]  
Baxter G., 1960, PAC J MATH, V10, P731
[4]   DIAMOND LEMMA FOR RING THEORY [J].
BERGMAN, GM .
ADVANCES IN MATHEMATICS, 1978, 29 (02) :178-218
[5]   GROBNER-SHIRSHOV BASES FOR DIALGEBRAS [J].
Bokut, L. A. ;
Chen, Yuqun ;
Liu, Cihua .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2010, 20 (03) :391-415
[6]   Grobner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras [J].
Bokut, L. A. ;
Chen, Yuqun ;
Qiu, Jianjun .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (01) :89-100
[7]  
Bokut L.A., 1994, ALGORITHMIC COMBINAT
[8]  
Bokut L. A., 1976, Algebra Logika, V15, P117, DOI [10.1007/bf01877233, DOI 10.1007/BF01877233]
[9]  
Bokut L.A., 2003, J. Math. Sci. (N.Y., V116, P2894
[10]   Composition-Diamond Lemma for associative conformal algebras [J].
Bokut, LA ;
Fong, Y ;
Ke, WF .
JOURNAL OF ALGEBRA, 2004, 272 (02) :739-774