Multipeak solutions for the Neumann problem of an elliptic system of Fitzhugh-Nagumo type

被引:14
作者
Dancer, EN [1 ]
Yan, S [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
D O I
10.1112/S0024611504014947
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:209 / 244
页数:36
相关论文
共 27 条
[1]  
Bahri A., 1989, PITMAN RES NOTES MAT, V182, pvi+I15+307
[2]  
CHEN X, 2002, PERIODICITY MINIMIZA
[3]  
Dancer EN, 2003, ANN SCUOLA NORM-SCI, V2, P679
[4]  
Dancer EN, 1999, INDIANA U MATH J, V48, P1177
[5]   Multipeak solutions for a singularly perturbed Neumann problem [J].
Dancer, EN ;
Yan, SS .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (02) :241-262
[6]   A minimization problem associated with elliptic systems of FitzHugh-Nagumo type [J].
Dancer, EN ;
Yan, SS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (02) :237-253
[7]  
DANCER EN, 2000, J DIFF INT EQUATIONS, V13, P747
[8]   A MAXIMUM PRINCIPLE FOR AN ELLIPTIC SYSTEM AND APPLICATIONS TO SEMILINEAR PROBLEMS [J].
DEFIGUEIREDO, DG ;
MITIDIERI, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) :836-849
[9]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&
[10]   Multiple interior peak solutions for some singularly perturbed Neumann problems [J].
Gui, CF ;
Wei, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (01) :1-27