On left nilalgebras of left nilindex four satisfying an identity of degree four

被引:7
作者
Hentzel, Irvin Roy [1 ]
Labra, Alicia
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
关键词
left nilalgebra; power associative; nilpotent;
D O I
10.1142/S0218196707003329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the concept of commutative nilalgebras to commutative algebras which are not power associative. We shall study commutative algebras A over fields of characteristic not equal 2, 3 which satisfy the identities x(x(xx)) = 0 and beta{x( y(xx)) - x( x(xy))} + gamma{y(x(xx)) - x(x(xy))} = 0. In these algebras the multiplication operator was shown to be nilpotent by Correa, Hentzel and Labra [2]. In this paper we prove that for every x. A we have A(A((xx)(xx))) = 0. We prove that there is an ideal I of A satisfying AI = IA = 0 and A/I is power associative.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 11 条
[1]  
CARINI L, 1988, ALGEBRA, V16, P339
[2]   On the nilpotence of the multiplication operator in commutative right nil algebras [J].
Correa, I ;
Hentzel, IR ;
Labra, A .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (07) :3473-3488
[3]   COMMUTATIVE POWER-ASSOCIATIVE NIL-ALGEBRAS OF LOW DIMENSION [J].
GERSTENHABER, M ;
MYUNG, HC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (01) :29-32
[4]   ALMOST JORDAN RINGS [J].
HENTZEL, IR ;
PERESI, LA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (02) :343-348
[5]  
JACOBS DP, 1993, P 5 INT C HADR MECH
[6]  
Jacobs DP, 1993, ALBERTS USER GUIDE
[7]   IDENTITIES OF NON-ASSOCIATIVE ALGEBRAS [J].
OSBORN, JM .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (01) :78-&
[9]   ZUR THEORIE DER LIE-TRIPEL-ALGEBREN [J].
PETERSSO.H .
MATHEMATISCHE ZEITSCHRIFT, 1967, 97 (01) :1-&
[10]  
Schafer RD., 1966, An Introduction to Nonassociative Algebras