Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome

被引:54
作者
Peters, M
Ermert, S
Jeck, N
Derst, C
Pechmann, U
Weber, S
Schlingmann, KP
Seyberth, HW
Waldegger, S
Konrad, M
机构
[1] Univ Marburg, Dept Pediat, D-35037 Marburg, Germany
[2] Univ Marburg, Dept Physiol, D-35037 Marburg, Germany
关键词
ROMK; hyperprostaglandin E syndrome; antenatal Bartter syndrome; trafficking defect; mutational classification; aminoglycoside;
D O I
10.1046/j.1523-1755.2003.00153.x
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background. Mutations in the renal K+ channel ROMK (Kir 1.1) cause hyperprostaglandin E syndrome/antenatal Bartter syndrome (HPS/aBS), a severe tubular disorder leading to renal salt and water wasting. Several studies confirmed the predominance of alterations of current properties in ROMK mutants. However, in most of these studies, analysis was restricted to nonmammalian cells and electrophysiologic methods. Therefore, for the majority of ROMK mutations, disturbances in protein trafficking remained unclear. The aim of the present study was the evaluation of different pathogenic mechanisms of 20 naturally occurring ROMK mutations with consecutive classification into mutational classes and identification of distinct rescue mechanisms according to the underlying defect. Methods. Mutated ROMK potassium channels were expressed in Xenopus oocytes and a human kidney cell line and analyzed by two electrode voltage clamp analysis, immunofluorescence, and Western blot analysis. Results. We identified 14 out of 20 ROMK mutations that did not reach the cell surface, indicating defective membrane trafficking. High expression levels rescued six out of 14 ROMK mutants, leading to significant K+ currents. In addition, two early inframe stop mutations could be rescued by aminoglycosides, resulting in full-length ROMK and correct trafficking to the plasma membrane in a subset of transfected cells. Conclusion. In contrast to previous reports, most of the investigated ROMK mutations displayed a trafficking defect that might be rescued by pharmacologic agents acting as molecular chaperones. The evaluation of different disease-causing mechanisms will be essential for establishing new and more specific therapeutic strategies for HPS/aBS patients.
引用
收藏
页码:923 / 932
页数:10
相关论文
共 41 条
[1]   Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice [J].
Barton-Davis, ER ;
Cordier, L ;
Shoturma, DI ;
Leland, SE ;
Sweeney, HL .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (04) :375-381
[2]   Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line [J].
Bedwell, DM ;
Kaenjak, A ;
Benos, DJ ;
Bebok, Z ;
Bubien, JK ;
Hong, J ;
Tousson, A ;
Clancy, JP ;
Sorscher, EJ .
NATURE MEDICINE, 1997, 3 (11) :1280-1284
[3]   ROMK INWARDLY RECTIFYING ATP-SENSITIVE K+ CHANNEL .2. CLONING AND DISTRIBUTION OF ALTERNATIVE FORMS [J].
BOIM, MA ;
HO, K ;
SHUCK, ME ;
BIENKOWSKI, MJ ;
BLOCK, JH ;
SLIGHTOM, JL ;
YANG, YH ;
BRENNER, BM ;
HEBERT, SC .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1995, 268 (06) :F1132-F1140
[4]   SUPPRESSION OF A NONSENSE MUTATION IN MAMMALIAN-CELLS INVIVO BY THE AMINOGLYCOSIDE ANTIBIOTICS G-418 AND PAROMOMYCIN [J].
BURKE, JF ;
MOGG, AE .
NUCLEIC ACIDS RESEARCH, 1985, 13 (17) :6265-6272
[5]   Mutations in the ROMK gene in antenatal Bartter syndrome are associated with impaired K+ channel function [J].
Derst, C ;
Konrad, M ;
Kockerling, A ;
Karolyi, L ;
Deschenes, G ;
Daut, J ;
Karschin, A ;
Seyberth, HW .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 230 (03) :641-645
[6]   Aminoglycoside suppression of a premature stop mutation in a Cftr-/- mouse carrying a human CFTR-G542X transgene [J].
Du, M ;
Jones, JR ;
Lanier, J ;
Keeling, KM ;
Lindsey, JR ;
Tousson, A ;
Bebök, Z ;
Whitsett, JA ;
Dey, CR ;
Colledge, WH ;
Evans, MJ ;
Sorscher, EJ ;
Bedwell, DM .
JOURNAL OF MOLECULAR MEDICINE-JMM, 2002, 80 (09) :595-604
[7]  
Feldmann D, 1998, J AM SOC NEPHROL, V9, P2357
[8]   A mutation linked with Bartter's syndrome locks Kir 1.1a (ROMK1) - Channels in a closed state [J].
Flagg, TP ;
Tate, M ;
Merot, J ;
Welling, PA .
JOURNAL OF GENERAL PHYSIOLOGY, 1999, 114 (05) :685-700
[9]   Potassium transport: From clearance to channels and pumps [J].
Giebisch, G ;
Wang, WH .
KIDNEY INTERNATIONAL, 1996, 49 (06) :1624-1631