ERROR ESTIMATES FOR A CLASS OF DISCONTINUOUS GALERKIN METHODS FOR NONSMOOTH PROBLEMS VIA CONVEX DUALITY RELATIONS

被引:4
作者
Bartels, Soren [1 ]
机构
[1] Albert Ludwigs Univ Freiburg, Abt Angew Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
关键词
Nonsmooth problems; discontinuous Galerkin method; error estimates; total variation; variational inequalities; DISCRETE TOTAL VARIATION; FINITE-ELEMENT METHODS; REGULARITY; CALCULUS; SOBOLEV;
D O I
10.1090/mcom/3656
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We devise and analyze a class of interior penalty discontinuous Galerkin methods for nonlinear and nonsmooth variational problems. Discrete duality relations are derived that lead to optimal error estimates in the case of total-variation regularized minimization or obstacle problems. The analysis provides explicit estimates that precisely determine the role of stabilization parameters. Numerical experiments confirm the optimality of the estimates.
引用
收藏
页码:2579 / 2602
页数:24
相关论文
共 36 条
[1]  
Ambrosio L., 2000, OXFORD MATH MONOGRAP
[2]  
[Anonymous], 2015, SPRINGER SERIES COMP
[3]  
[Anonymous], 1970, CONVEX ANAL
[4]  
[Anonymous], 1978, FINITE ELEMENT METHO
[5]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[6]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[7]  
Attouch A, 2005, MOS-SIAM SER OPTIMIZ, V6, P1
[8]  
Bartels S, 2016, TEXTS APPL MATH, V64, P1, DOI 10.1007/978-3-319-32354-1
[9]   A TOTAL VARIATION DIMINISHING INTERPOLATION OPERATOR AND APPLICATIONS [J].
Bartels, Soeren ;
Nochetto, Ricardo H. ;
Salgado, Abner J. .
MATHEMATICS OF COMPUTATION, 2015, 84 (296) :2569-2587
[10]   DISCRETE TOTAL VARIATION FLOWS WITHOUT REGULARIZATION [J].
Bartels, Soeren ;
Nochetto, Ricardo H. ;
Salgado, Abner J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) :363-385