Reducing crystallinity in solid polymer electrolytes for lithium-metal batteries via statistical copolymerization

被引:61
作者
St-Onge, Vincent [1 ]
Cui, Mengyang [2 ]
Rochon, Sylviane [3 ]
Daigle, Jean-Christophe [3 ]
Claverie, Jerome P. [1 ]
机构
[1] Univ Sherbrooke, 2500 Boul Univ, Sherbrooke, PQ, Canada
[2] McMaster Univ, Hamilton, ON, Canada
[3] Ctr Excellence Transportat Electrificat & Energy, Varennes, PQ, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
POLY(ETHYLENE OXIDE); IONIC-CONDUCTIVITY; CRYSTALLIZATION BEHAVIOR; SALT-CONCENTRATION; PEO; ETHYLENE; TEMPERATURE; TRANSPORT; POLYETHYLENE; COMPLEXES;
D O I
10.1038/s43246-021-00187-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polyethylene oxide is a common solid polymer electrolyte for solid-state lithium metal batteries. Here, statistical copolymerization is shown to be an effective approach to reduce its crystallinity, enabling a high ionic conductivity during room temperature battery operation. The discovery that polyethylene oxide promotes ionic conductivity led to the development of solid polymer electrolytes. However, their conductivity is severely reduced by crystallinity. Here, statistical copolymerization is used to design macromolecular architectures where crystallinity is disrupted by a minimal amount of non-ethylene oxide comonomer units. Using the Flory exclusion model, we demonstrate that polymers containing 18 mol% comonomer and 18 wt% LiTFSI are devoid of crystallinity. A 10 mol% comonomer content is sufficient to reach a conductivity of 0.3 x 10(-4) S cm(-1) at 25 degrees C. The Li+ transference number is 0.6, indicating that the comonomer units not only limit the crystallinity but also weaken the strength of the Li+ coordination to the polymer. The resulting solid polymer electrolyte is effective in an all-solid LFP|Li-metal battery operating at 25 degrees C, demonstrating that statistical copolymerization is an efficient tool for polymer electrolyte design.
引用
收藏
页数:11
相关论文
共 57 条
[1]   Crystallization behavior of PEO in blends of poly(ethylene oxide)/poly(2-vinyl pyridine)-b-(ethylene oxide) block copolymer [J].
Araneda, Emilio ;
Leiva, Angel ;
Gargallo, Ligia ;
Hadjichristidis, Nikos ;
Mondragon, Inaki ;
Radic, Deodato .
POLYMER ENGINEERING AND SCIENCE, 2012, 52 (05) :1128-1136
[2]   POLYMER SOLID ELECTROLYTES - AN OVERVIEW [J].
ARMAND, M .
SOLID STATE IONICS, 1983, 9-10 (DEC) :745-754
[3]   MICROSCOPIC INVESTIGATION OF IONIC-CONDUCTIVITY IN ALKALI-METAL SALTS POLY(ETHYLENE OXIDE) ADDUCTS [J].
BERTHIER, C ;
GORECKI, W ;
MINIER, M ;
ARMAND, MB ;
CHABAGNO, JM ;
RIGAUD, P .
SOLID STATE IONICS, 1983, 11 (01) :91-95
[4]   The poly(propylene oxide-co-ethylene oxide) gradient is controlled by the polymerization method: determination of reactivity ratios by direct comparison of different copolymerization models [J].
Blankenburg, Jan ;
Kersten, Erik ;
Maciol, Kamil ;
Wagner, Manfred ;
Zarbakhsh, Sirus ;
Frey, Holger .
POLYMER CHEMISTRY, 2019, 10 (22) :2863-2871
[5]  
Bovey F. A., 1967, PURE APPL CHEM, V15, P349
[6]   A Systematic Study of Vinyl Ether-Based Poly(Ethylene Oxide) Side-Chain Polymer Electrolytes [J].
Butzelaar, Andreas J. ;
Liu, Kun L. ;
Roering, Philipp ;
Brunklaus, Gunther ;
Winter, Martin ;
Theato, Patrick .
ACS APPLIED POLYMER MATERIALS, 2021, 3 (03) :1573-1582
[7]   Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations [J].
Cao, Daxian ;
Sun, Xiao ;
Li, Qiang ;
Natan, Avi ;
Xiang, Pengyang ;
Zhu, Hongli .
MATTER, 2020, 3 (01) :57-94
[8]   Variation of the mesh size of PEO-based networks filled with TFSILi:: from an Arrhenius to WLF type conductivity behavior [J].
Carvalho, LM ;
Guégan, P ;
Cheradame, H ;
Gomes, AS .
EUROPEAN POLYMER JOURNAL, 2000, 36 (02) :401-409
[9]   Relationship between Conductivity, Ion Diffusion, and Transference Number in Perfluoropolyether Electrolytes [J].
Chintapalli, Mahati ;
Timachova, Ksenia ;
Olson, Kevin R. ;
Mecham, Sue J. ;
Devaux, Didier ;
DeSimone, Joseph M. ;
Balsara, Nitash P. .
MACROMOLECULES, 2016, 49 (09) :3508-3515
[10]   Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1064-1069