Constant mean curvature foliations of flat space-times

被引:14
作者
Andersson, L [1 ]
机构
[1] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
关键词
D O I
10.4310/CAG.2002.v10.n5.a10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a maximal globally hyperbolic flat n + 1-dimensional space-time with compact Cauchy surface of hyperbolic type. We prove that V is globally foliated by constant mean curvature hypersurfaces M-tau, with mean curvature tau taking all values in (-infinity, 0). For n greater than or equal to 3, define the rescaled volume of M-tau by H = \tau\(n)Vol (M, g), where g is the induced metric. Then H greater than or equal to n(n)Vol (M, g(0)) where g(0) is the hyperbolic metric on M with sectional curvature -1. Equality holds if and only if (M, g) is isometric to (M, g(0)).
引用
收藏
页码:1125 / 1150
页数:26
相关论文
共 29 条
[1]   Scalar curvature, metric degenerations and the static vacuum Einstein equations on 3-manifolds, I [J].
Anderson, MT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (05) :855-967
[2]  
Anderson MT., 1991, Geom. Funct. Anal, V1, P231, DOI [DOI 10.1007/BF01896203, 10.1007/BF01896203]
[3]  
ANDERSON MT, 2000, LONG TIME EVOLUTION
[4]  
ANDERSON MT, 1997, COMP GEOM-THEOR APPL, P49
[5]   On the global evolution problem in 2+1 gravity [J].
Andersson, L ;
Moncrief, V ;
Tromba, AJ .
JOURNAL OF GEOMETRY AND PHYSICS, 1997, 23 (3-4) :191-205
[6]  
ANDERSSON L, UNPUB ANN H POINCARE
[7]  
Artin M., 1968, INVENT MATH, V5, P277
[8]   ENTROPIES AND RIGIDITIES OF LOCALLY SYMMETRICAL SPACES WITH STRICTLY NEGATIVE CURVATURE [J].
BESSON, G ;
COURTOIS, G ;
GALLOT, S .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (05) :731-799
[9]   VOLUME AND MINIMAL ENTROPY OF LOCALLY SYMMETRICAL SPACES [J].
BESSON, G ;
COURTOIS, G ;
GALLOT, S .
INVENTIONES MATHEMATICAE, 1991, 103 (02) :417-445
[10]  
BIVENS I, 1981, GLOBAL DIFFERENTIAL, P243